在使用多线程技术时,有时会遇到这样的问题:代码明明是照着教程写的,但每次运行的结果都不同。这可能是因为多线程的执行顺序是无法预知的,它取决于底层操作系统的调度策略、系统负载等因素。
例如,以下代码使用三个线程来处理一个队列中的数据:
import Queue
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
def __init__(self, threadID, name, q):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q
def run(self):
print "Starting " + self.name
process_data(self.name, self.q)
print "Exiting " + self.name
def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print "%s processing %s" % (threadName, data)
else:
queueLock.release()
time.sleep(1)
threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1
# Create new threads
for tName in threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1
# Fill the queue
queueLock.acquire()
for word in nameList:
workQueue.put(word)
queueLock.release()
# Wait for queue to empty
while not workQueue.empty():
pass
# Notify threads it's time to exit
exitFlag = 1
# Wait for all threads to complete
for t in threads:
t.join()
print "Exiting Main Thread"
运行这段代码,可能会出现以下几种不同的执行顺序:
Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-3 processing One
Thread-2 processing Two
Thread-1 processing Three
Thread-3 processing Four
Thread-2 processing Five
Exiting Thread-1
Exiting Thread-3
Exiting Thread-2
Exiting Main Thread
Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-3 processing One
Thread-2 processing Two
Thread-1 processing Three
Thread-3 processing Four
Thread-3 processing Five
Exiting Thread-1
Exiting Thread-2
Exiting Thread-3
Exiting Main Thread
Starting Thread-1
Starting Thread-2
Starting Thread-3
Thread-1 processing One
Thread-2 processing Two
Thread-3 processing Three
Thread-1 processing Four
Thread-2 processing Five
Exiting Thread-3
Exiting Thread-1
Exiting Thread-2
Exiting Main Thread
- 解决方案
如果需要控制多线程的执行顺序,可以采用以下几种方法:
-
使用锁(lock)来控制对共享资源的访问。
-
使用信号量(semaphore)来控制资源的使用数量。
-
使用事件(event)来通知其他线程某件事已经发生。
-
使用条件变量(condition variable)来等待某个条件满足。
-
使用队列(queue)来协调线程之间的通信。
以下是一些代码示例:
# 使用锁来控制对共享资源的访问
import threading
lock = threading.Lock()
def worker(n):
lock.acquire()
print(f"Worker {n} is working")
lock.release()
threads = [threading.Thread(target=worker, args=(i,)) for i in range(5)]
for t in threads:
t.start()
# 使用信号量来控制资源的使用数量
import threading
semaphore = threading.Semaphore(2)
def worker(n):
semaphore.acquire()
print(f"Worker {n} is working")
time.sleep(1)
semaphore.release()
threads = [threading.Thread(target=worker, args=(i,)) for i in range(5)]
for t in threads:
t.start()
# 使用事件来通知其他线程某件事已经发生
import threading
event = threading.Event()
def worker(n):
event.wait()
print(f"Worker {n} is working")
threads = [threading.Thread(target=worker, args=(i,)) for i in range(5)]
for t in threads:
t.start()
event.set()
# 使用条件变量来等待某个条件满足
import threading
condition = threading.Condition()
def worker(n):
condition.acquire()
condition.wait_for(lambda: condition_is_met)
print(f"Worker {n} is working")
condition.release()
threads = [threading.Thread(target=worker, args=(i,)) for i in range(5)]
for t in threads:
t.start()
condition.acquire()
condition_is_met = True
condition.notify_all()
condition.release()
# 使用队列来协调线程之间的通信
import threading
queue = Queue()
def producer():
for i in range(5):
queue.put(i)
def consumer():
while True:
item = queue.get()
print(f"Consumer got item {item}")
producer_thread = threading.Thread(target=producer)
consumer_thread = threading.Thread(target=consumer)
producer_thread.start()
consumer_thread.start()
producer_thread.join()
queue.join()
consumer_thread.join()
通过使用这些方法,可以控制多线程的执行顺序,并确保它们按照期望的顺序执行。