爬虫技术可以分析数据吗?

数据分析工程师掌握爬虫技术的原因包括:Python语言基础使得学习爬虫方便;编写爬虫便于快速获取数据;小型分析任务中可能需要集数据采集、分析和呈现于一身。爬虫技术在Python中相对简单,且可复用,是获取数据的有效手段。建议大数据从业者学习爬虫。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前在不少大数据团队中,数据分析和数据挖掘工程师通常都有明确的分工,数据采集往往并不是数据分析和挖掘工程师的任务,通常做爬虫的是大数据应用开发程序员或者是数据采集工程师(使用爬虫工具)的工作任务。但是对于数据分析工程师来说,掌握爬虫技术也是一个比较普遍的现象,原因有以下几点:
请添加图片描述

第一:数据分析师往往都会使用Python,而爬虫是Python比较擅长的开发内容。不少数据分析师在学习Python开发的时候都做过爬虫开发,其实不少Python程序员都会使用Python做爬虫,这是学习Python比较常见的实验。
第二:方便。不少数据分析工程师在学习的时候都会自己找数据,而编写爬虫是找数据比较方便的方式,所以很多数据分析工程师往往都会写爬虫。我在早期学数据分析的时候就是自己写爬虫,这是一个比较普遍的情况。
第三:任务需要。现在不少团队针对小型分析任务往往会交给一两个人来完成,这个时候往往既要收集数据、分析数据,还需要呈现数据,这种情况下就必须掌握爬虫技术了。这种情况在大数据分析领域是比较常见的,当然也取决于项目的大小。看一个使用Numpy和Matplotlib做数据分析呈现的小例子:
网络爬虫技术本身并不十分复杂(也可以做的十分复杂),在使用Python开发出一个爬虫程序之后,在很多场景下是可以复用的,只需要调整一些参数就可以了,所以爬虫技术并不难。对于数据分析人员来说,获得数据的方式有很多种,编写爬虫是一个比较方便和实用的手段,建议大数据从业人员都学习一下爬虫技术。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值