标签传播算法
参数解释
标签传播算法要求为标注数据标签为1
LablePropagation(kernel,gamma,n_neighbors)
- kernel:{“knn”,“rbf”}
- gamma:rbf中的r
- n_neighbors:knn中的参数
代码
from sklearn.datasets import load_iris
from sklearn.semi_supervised import LabelPropagation
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score,recall_score,f1_score
iris = load_iris()
labels = np.copy(iris.target)
labels[np.random.rand(len(labels)) < 0.3] = -1
label_prop_model = LabelPropagation()
label_prop_model.fit(iris.data,labels)
label_predict = label_prop_model.predict(iris.data)
print("acc_score:",accuracy_score(iris.target,label_predict))
print("acc_score:",recall_score(iris.target,label_predict,average="macro"))
print("acc_score:",f1_score(iris.target,label_predict,average="macro"))
结果
acc_score: 0.98
acc_score: 0.98
acc_score: 0.9799819837854069
by CyrusMay 2022 04 05
标签传播算法详解:参数解读与Iris数据集实战
本文详细介绍了半监督学习中标签传播算法的参数,如kernel(knn和rbf)、gamma(rbf中的参数)和n_neighbors(knn中的邻居数量)。通过使用sklearn库的Iris数据集进行实例演示,展示了如何设置这些参数并计算精度、召回率和F1分数。结果显示了高准确率的性能。
1888





