报错
Traceback (most recent call last):
File "E:/Program Files/PyCharm 2019.2/PyG/test.py", line 70, in <module>
loss.backward() # 反向传播计算梯度
File "F:\Anaconda3\lib\site-packages\torch\_tensor.py", line 307, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
File "F:\Anaconda3\lib\site-packages\torch\autograd\__init__.py", line 156, in backward
allow_unreachable=True, accumulate_grad=True) # allow_unreachable flag
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
原因
搭建GCN模型时:
self.conv1 = GCNConv(features, 32)
self.conv2 = GCNConv(32, classes)
classes与原始数据的类别数不一致。
解决
self.conv2 = GCNConv(32, dataset.num_classes)