There are n integers a 1,a 2,…,a n-1,a n in the sequence A, the sum of these n integers is larger than zero. There are n integers b 1,b2,…,b n-1,b n in the sequence B, B is the generating sequence of A and bi = a 1+a 2,+…+a i (1≤i≤n). If the elements of B are all positive, A is called as a positive sequence.
We left shift the sequence A 0,1,2,…,n-1 times, and get n sequences, that is showed as follows:
A(0): a1,a2,…,an-1,an
A(1): a2,a3,…,an,a1
…
A(n-2): an-1,an,…,an-3,an-2
A(n-1): an,a1,…,an-2,an-1
Your task is to find out the number of positive sequences in the set { A(0), A(1), …, A(n-2), A(n-1) }.
Input
The first line of the input contains an integer T (T <= 20), indicating the number of cases. Each case begins with a line containing one integer n (1 <= n <= 500,000), the number of elements in the sequence. The next line contains n integers ai(-2,000,000,000≤ai≤2,000,000,000,1≤i≤n), the value of elements in the sequence.
Output
For each test case, print a line containing the test case number (beginning with 1) and the number of positive sequences.
Sample Input
2 3 1 1 -1 8 1 1 1 -1 1 1 1 -1
Sample Output
Case 1: 1 Case 2: 4
题意: 给定一个序列,每个点可以做起点形成新序列,每个序列可以形成以头为起点所有长度的新序列Bi,如果所有Bi都大于0,那么这个序列是可以的,求一共几个这样的序列。
思路:逆向思维,从后往前推,如果当前位置<=0,那么则这个位置为起点是不行的,往前推,加到一个直到>0的sum,中间都是不符合的。 要注意一个点,就是如果加到起点,sum还是<=0的,那么要在从最后枚举一遍,因为序列是循环的。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
double a[500010];int vis[500020];
int main()
{
int t;cin>>t;
for(int kase=1;kase<=t;kase++)
{
int n;cin>>n;
for(int i=0;i<n;i++){
scanf("%lf",&a[i]);
}
int flag=1;double temp=0;int sum=n;
memset(vis,0,sizeof(vis));
for(int i=n-1;i>=0;i--){
if(a[i]<=0&&flag)flag=0;
if(!flag){
temp+=a[i];
if(temp<=0)vis[i]=1,sum--;
else {flag=1;temp=0;}
}
}
if(temp<=0)
{
for(int i=n-1;i>=0;i--)
{
temp+=a[i];
if(temp<=0&&!vis[i]){
vis[i]=1;
sum--;
}else if(temp>0)break;
}
}
printf("Case %d: %d\n",kase,sum);
}
}