Crossing River

本文探讨了一群人使用一条最多可载两人且速度受慢者限制的小船过河的问题,通过模拟和策略选择,旨在找到使所有人过河所需时间最短的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A group of N people wishes to go across a river with only one boat, which can at most carry two persons. Therefore some sort of shuttle arrangement must be arranged in order to row the boat back and forth so that all people may cross. Each person has a different rowing speed; the speed of a couple is determined by the speed of the slower one. Your job is to determine a strategy that minimizes the time for these people to get across.

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. The first line of each case contains N, and the second line contains N integers giving the time for each people to cross the river. Each case is preceded by a blank line. There won't be more than 1000 people and nobody takes more than 100 seconds to cross.

Output

For each test case, print a line containing the total number of seconds required for all the N people to cross the river.

Sample Input

1
4
1 2 5 10

Sample Output

17
n个人都想要过河,每一个人都有过河的时间,只有一条船,
最多能装2人,两个人驾驶一条船时,过河的时间
由两个人中的最长时间决定。问现在所有人过河最短需要多久。

当人数小于四时,可以直接模拟出来,当人数不小于四时,
将过河时间由小到大排序后,取a0,a1,ai-1,ai,这
四个人组成一组。有两种方案 1.a0先送ai过河然后回来
,再送ai-1,再回来。2. a0和a1过河,a0回去,然后
ai,ai-1过河,a1将船开回去。选择用时少的,
然后重复这个过程

 

#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int a[1010];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int n;
        scanf("%d",&n);
        for(int i=0;i<n;i++){
            scanf("%d",&a[i]);
        }

        sort(a,a+n);
        int ti=0;
        if(n==1){
            ti+=a[0];
        }else if(n==2){
            ti+=a[1];
        }else if(n==3){
            ti+=a[0]+a[1]+a[2];
        }else{
            int i;
            for(i=n-1;i>=3;i-=2){
                int t1=a[1]+a[0]+a[i]+a[1];
                int t2=a[0]+a[i]+a[0]+a[i-1];
                t1<t2?ti+=t1:ti+=t2;
            }
            if(i==1){
                ti+=a[1];
            }else{
                ti+=a[0]+a[1]+a[2];
            }
        }
        printf("%d\n",ti);
    }
}

 

### M-C 过河问题 Python 实现 M-C (传教士与食人族) 问题是经典的图遍历问题之一。该问题的目标是在不违反约束条件的情况下,将三个传教士和三个食人族安全渡过河流。 #### 定义状态空间表示法 为了便于处理,可以定义一个元组 `(m, c, b)` 来描述当前的状态: - `m` 表示左岸的传教士数量 - `c` 表示左岸的食人族数量 - `b` 是布尔值,指示船是否在左岸 (`True`) 或右岸 (`False`) 合法状态需满足两个条件: 1. 左右两岸都不能让食人族的数量超过传教士的数量 2. 所有人员数目应在合理范围内(0到3之间)[^1] ```python from collections import deque def is_valid_state(state): m, c, _ = state right_m = 3 - m right_c = 3 - c if not all([0 <= i <= 3 for i in [m, c, right_m, right_c]]): return False if m != 0 and m < c or right_m != 0 and right_m < right_c: return False return True ``` #### 广度优先搜索算法实现 通过广度优先搜索(BFS),可以从初始状态出发逐步探索所有可能的动作组合直到找到解决方案为止。 ```python def solve_mc_problem(): start_state = (3, 3, True) goal_state = (0, 0, False) visited_states = set() queue = deque([(start_state, [])]) while queue: current_state, path = queue.popleft() if current_state == goal_state: return path if current_state in visited_states: continue visited_states.add(current_state) possible_moves = [(i,j) for i in range(3) for j in range(3) if 1<=i+j<=2] for move in possible_moves: next_state = get_next_state(current_state, move) if is_valid_state(next_state): new_path = list(path) new_path.append((current_state, move)) queue.append((next_state, new_path)) def get_next_state(state, action): m, c, boat_side = state mm, cc = action if boat_side: return (m-mm, c-cc, False) else: return (m+mm, c+cc, True) ``` 此代码实现了完整的MC问题求解过程并返回从起始位置到达目标位置所需的移动序列[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值