【迪杰斯特拉】Dijkstra算法介绍

本文详细介绍了迪杰斯特拉算法的工作原理、操作步骤,并通过G4图例一步步演示如何计算最短路径,从起点到各顶点的距离。通过实例理解复杂理论,适合初学者和进阶者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

迪杰斯特拉算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

基本思想

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。

操作步骤

(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。

(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

(4) 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

迪杰斯特拉算法图解
在这里插入图片描述

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。
在这里插入图片描述

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

迪杰斯特拉(Dijkstra)算法是一种寻找图中两点间最短路径的经典算法,适用于无向图和有向图,特别是当边权表示距离、费用或其他成本时。算法的基本思想是从起点开始逐步探索邻接节点,并始终选择当前已访问节点到未访问节点中代价最小的一条边作为下一步的前进方向。 在MATLAB中实现迪杰斯特拉算法通常涉及以下几个步骤: 1. **初始化**:创建一个二维数组或矩阵来存储各顶点之间的距离,将所有初始值设置为无穷大,除了起点到自身的距离设置为0;创建一个布尔型数组记录哪些节点已经被处理过。 2. **选取最小距离节点**:从未被处理过的节点中选出距离起点最近的一个节点作为当前节点。 3. **更新距离**:对于当前节点的所有相邻节点,如果从起点通过当前节点到相邻节点的距离比之前记录的距离更小,则更新这个距离。 4. **标记已处理节点**:将当前节点标记为已经处理过。 5. **重复步骤2至4**,直到所有节点都被处理或找到目标节点。 MATLAB代码示例: ```matlab function [shortestPaths, processedNodes] = dijkstra(graphMatrix, startNode) % graphMatrix 是一个邻接矩阵,其中非零元素表示两个节点间的距离。 % startNode 是起始节点的位置。 % shortestPaths 和 processedNodes 分别返回最短路径矩阵和处理节点状态。 n = size(graphMatrix, 1); visited = false(n, 1); % 初始化未访问节点标志位 distances = inf(1, n); % 初始距离设为无穷大 distances(startNode) = 0; % 起始节点距离设为0 for i = 1:n-1 current = find(~visited & (distances == min(distances(~visited))), 1); visited(current) = true; for j = 1:n if ~visited(j) && graphMatrix(current, j) ~= 0 newDist = distances(current) + graphMatrix(current, j); if newDist < distances(j) distances(j) = newDist; end end end end shortestPaths = distances; processedNodes = visited; ``` **相关问题**: 1. **如何优化迪杰斯特拉算法**?在大数据集上运行时,可以考虑使用优先队列来加速查找下一个最短路径候选节点的过程。 2. **迪杰斯特拉算法与贝尔曼-福特算法的区别是什么**?贝尔曼-福特算法可以在存在负权重边的情况下求解最短路径,而迪杰斯特拉算法不支持负权重边。 3. **如何将迪杰斯特拉算法应用到实际问题中**?比如网络路由优化、地图导航系统中的路径规划等场景,都可以利用此算法来找到从源点到所有其他点的最短路径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值