HDU 4800 Josephina and RPG(DP)

本文探讨了一款RPG游戏中的挑战游戏部分,玩家需组建三角色团队对抗AI,通过统计不同组合的胜率,寻找最佳策略以最大化获胜概率。文章提供了详细的DP算法实现,用于计算每轮比赛的最佳胜率。

Josephina and RPG

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2349    Accepted Submission(s): 711
Special Judge

 

Problem Description

A role-playing game (RPG and sometimes roleplaying game) is a game in which players assume the roles of characters in a fictional setting. Players take responsibility for acting out these roles within a narrative, either through literal acting or through a process of structured decision-making or character development.
Recently, Josephina is busy playing a RPG named TX3. In this game, M characters are available to by selected by players. In the whole game, Josephina is most interested in the "Challenge Game" part.
The Challenge Game is a team play game. A challenger team is made up of three players, and the three characters used by players in the team are required to be different. At the beginning of the Challenge Game, the players can choose any characters combination as the start team. Then, they will fight with N AI teams one after another. There is a special rule in the Challenge Game: once the challenger team beat an AI team, they have a chance to change the current characters combination with the AI team. Anyway, the challenger team can insist on using the current team and ignore the exchange opportunity. Note that the players can only change the characters combination to the latest defeated AI team. The challenger team gets victory only if they beat all the AI teams.
Josephina is good at statistics, and she writes a table to record the winning rate between all different character combinations. She wants to know the maximum winning probability if she always chooses best strategy in the game. Can you help her?

 

 

Input

There are multiple test cases. The first line of each test case is an integer M (3 ≤ M ≤ 10), which indicates the number of characters. The following is a matrix T whose size is R × R. R equals to C(M, 3). T(i, j) indicates the winning rate of team i when it is faced with team j. We guarantee that T(i, j) + T(j, i) = 1.0. All winning rates will retain two decimal places. An integer N (1 ≤ N ≤ 10000) is given next, which indicates the number of AI teams. The following line contains N integers which are the IDs (0-based) of the AI teams. The IDs can be duplicated.

 

 

Output

For each test case, please output the maximum winning probability if Josephina uses the best strategy in the game. For each answer, an absolute error not more than 1e-6 is acceptable.

 

 

Sample Input


 

4 0.50 0.50 0.20 0.30 0.50 0.50 0.90 0.40 0.80 0.10 0.50 0.60 0.70 0.60 0.40 0.50 3 0 1 2

 

 

Sample Output


 

0.378000

 

据说是简单DP好吧,想了很久

1.dp[i][j]表示的是第i轮中用第j个队伍的最大胜率

2.那么我们可以想一下对于每个队伍J有两种方案,要么是乘前面换的,要么乘不换的,但是我们规定当前打败ai的队伍一定是J队伍,那么对于每个J队伍,如果上一次击败的是ai'(j)队伍,那么可以变换,如果上次击败的不是ai(J)队伍,那么当前J队伍只能不换,再仔细想想,我们可以发现每一轮,规定是某个队伍击败Ai后,其实只有一个队伍可以进行变换(即 击败的Ai与自己的队伍编号相同的)

3.所以每次的最优解都是当前轮,每个队伍击败Ai的最大概率

4.写dp容易掉头发

#include <stdio.h>
#include<string.h>
#include<algorithm> 
using namespace std;
double map[261][261];
double dp[10010][261];
int main(int argc, char *argv[])
{
	int m;
	while(scanf("%d",&m)!=EOF)
	{
		m=m*(m-1)*(m-2)/6;
		int i,j;
		for(i=0;i<m;i++)
		{
			for(j=0;j<m;j++)
			{
				scanf("%lf",&map[i][j]);			
			}
		}	
		for(i=0;i<m;i++)
		{
			dp[0][i]=1;
		}		
		int n;
		scanf("%d",&n);
		double change;	
		for(i=1;i<=n;i++)
		{
			int enemy;
			scanf("%d",&enemy);
	  		change=0;
			for(j=0;j<m;j++)
			{
				dp[i][j]=dp[i-1][j]*map[j][enemy];
				change=max(change,dp[i][j]);	
			}
			dp[i][enemy]=change;
		}
		printf("%.6lf\n",change);
	}	
	return 0;
}

 

MATLAB代码实现了一个基于多种智能优化算法优化RBF神经网络的回归预测模型,其核心是通过智能优化算法自动寻找最优的RBF扩展参数(spread),以提升预测精度。 1.主要功能 多算法优化RBF网络:使用多种智能优化算法优化RBF神经网络的核心参数spread。 回归预测:对输入特征进行回归预测,适用于连续值输出问题。 性能对比:对比不同优化算法在训练集和测试集上的预测性能,绘制适应度曲线、预测对比图、误差指标柱状图等。 2.算法步骤 数据准备:导入数据,随机打乱,划分训练集和测试集(默认7:3)。 数据归一化:使用mapminmax将输入和输出归一化到[0,1]区间。 标准RBF建模:使用固定spread=100建立基准RBF模型。 智能优化循环: 调用优化算法(从指定文件夹中读取算法文件)优化spread参数。 使用优化后的spread重新训练RBF网络。 评估预测结果,保存性能指标。 结果可视化: 绘制适应度曲线、训练集/测试集预测对比图。 绘制误差指标(MAE、RMSE、MAPE、MBE)柱状图。 十种智能优化算法分别是: GWO:灰狼算法 HBA:蜜獾算法 IAO:改进天鹰优化算法,改进①:Tent混沌映射种群初始化,改进②:自适应权重 MFO:飞蛾扑火算法 MPA:海洋捕食者算法 NGO:北方苍鹰算法 OOA:鱼鹰优化算法 RTH:红尾鹰算法 WOA:鲸鱼算法 ZOA:斑马算法
基于ILP的最优PMU放置优化研究(Matlab代码实现)内容概要:本文围绕基于整数线性规划(ILP)的最优PMU(相量测量单元)放置优化展开研究,旨在通过数学优化方法确定电力系统中PMU的最佳安装位置,以实现系统完全可观测的同时最小化设备成本。研究介绍了PMU在电力系统状态估计中的关键作用,构建了以最小化PMU数量为目标的ILP数学模型,并详细阐述了约束条件的建立,如系统可观测性约束等。文中提供了完整的Matlab代码实现,利用YALMIP工具箱和合适的求解器(如CPLEX或Gurobi)进行求解,验证了该方法的有效性和实用性。; 适合人群:具备电力系统基础知识、优化理论背景以及Matlab编程能力的高校研究生、科研人员及电力系统相关领域的工程师。; 使用场景及目标:① 解决电力系统状态估计中PMU的最优布点问题,降低系统监测成本;② 学习和掌握如何将实际工程问题转化为整数线性规划模型,并利用Matlab进行求解;③ 为智能电网的广域测量系统(WAMS)建设提供理论依据和技术支持。; 阅读建议:此资源以理论结合实践的方式,不仅提供了严谨的数学模型推导,更侧重于Matlab代码的实现。读者应在理解ILP基本原理和电力系统可观测性概念的基础上,仔细阅读并调试所提供的代码,尝试在不同规模的电网模型(如IEEE标准节点系统)上进行测试,以加深对优化算法和电力系统监控的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值