基于强化学习的gym Mountain Car稳定控制

基于强化学习的gym Mountain Car稳定控制

依赖包版本

gym == 0.21.0
stable-baselines3 == 1.6.2

环境测试

环境介绍:Mountain Car

import gym


# Create environment
env = gym.make("MountainCar-v0")

eposides = 10
for eq in range(eposides):
    obs = env.reset()
    done = False
    rewards = 0
    while not done:
        action = env.action_space.sample()
        obs, reward, done, info = env.step(action)
        env.render()
        rewards += reward
    print(rewards)

环境测试视频:Mountain Car test

Q-learning 模型

模型训练

import gym
import numpy as np

env = gym.make("MountainCar-v0")

# Q-Learning settings
LEARNING_RATE = 0.1
DISCOUNT = 0.95
EPISODES = 25000

SHOW_EVERY = 1000

# Exploration settings
epsilon = 1  # not a constant, qoing to be decayed
START_EPSILON_DECAYING = 1
END_EPSILON_DECAYING = EPISODES//2
epsilon_decay_value = epsilon/(END_EPSILON_DECAYING - START_EPSILON_DECAYING)

DISCRETE_OS_SIZE = [20, 20]
discrete_os_win_size = (env.observation_space.high - env.observation_space.low) / DISCRETE_OS_SIZE

print(discrete_os_win_size)


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值