Our protagonist is the handsome human prince Aragorn comes from The Lord of the Rings. One day Aragorn finds a lot of enemies who want to invade his kingdom. As Aragorn knows, the enemy has N camps out of his kingdom and M edges connect them. It is guaranteed that for any two camps, there is one and only one path connect them. At first Aragorn know the number of enemies in every camp. But the enemy is cunning , they will increase or decrease the number of soldiers in camps. Every time the enemy change the number of soldiers, they will set two camps C1 and C2. Then, for C1, C2 and all camps on the path from C1 to C2, they will increase or decrease K soldiers to these camps. Now Aragorn wants to know the number of soldiers in some particular camps real-time.
Input
Multiple test cases, process to the end of input.
For each case, The first line contains three integers N, M, P which means there will be N(1 ≤ N ≤ 50000) camps, M(M = N-1) edges and P(1 ≤ P ≤ 100000) operations. The number of camps starts from 1.
The next line contains N integers A1, A2, …AN(0 ≤ Ai ≤ 1000), means at first in camp-i has Ai enemies.
The next M lines contains two integers u and v for each, denotes that there is an edge connects camp-u and camp-v.
The next P lines will start with a capital letter ‘I’, ‘D’ or ‘Q’ for each line.
‘I’, followed by three integers C1, C2 and K( 0≤K≤1000), which means for camp C1, C2 and all camps on the path from C1 to C2, increase K soldiers to these camps.
‘D’, followed by three integers C1, C2 and K( 0≤K≤1000), which means for camp C1, C2 and all camps on the path from C1 to C2, decrease K soldiers to these camps.
‘Q’, followed by one integer C, which is a query and means Aragorn wants to know the number of enemies in camp C at that time.
Output
For each query, you need to output the actually number of enemies in the specified camp.
Sample Input
3 2 5
1 2 3
2 1
2 3
I 1 3 5
Q 2
D 1 2 2
Q 1
Q 3
Sample Output
7
4
8
树链剖分,和之前不同的是,值是在边上,这个点权,还稍微简单一些
#include<cstdio>
#include<cstring>
#include<algorithm>
#include <iostream>
#include<cmath>
#include <string>
#define N 50010
using namespace std;
const int INF=1<<30;
int n,m,t;
int siz[N],dep[N],fa[N],son[N];
int tid[N],top[N];
int head[N],to[N<<1],nex[N<<1],edge;
int total;
void addEdge(int u,int v)
{
to[edge]=v,nex[edge]=head[u],head[u]=edge++;
to[edge]=u,nex[edge]=head[v],head[v]=edge++;
}
void dfs(int u,int last,int d )
{
dep[u]=d;
siz[u]=1;
fa[u]=last;
for(int i=head[u];i;i=nex[i])
{
int v=to[i];
if(v==last)
continue;
dfs(v,u,d+1);
siz[u]+=siz[v];
if(siz[v]>siz[son[u]])
son[u]=v;
}
}
void dfs(int u,int tp)
{
top[u]=tp;
tid[u]=++total;
if(!son[u])
return;
dfs(son[u],tp);
for(int i=head[u];i;i=nex[i])
{
int v=to[i];
if(v==son[u]||v==fa[u])
continue;
dfs(v,v);
}
}
int num[N],a[N];
int sum[N<<2],add[N<<2];
void pushUp(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
if(l==r)
{
sum[rt]=num[l];
return;
}
int mid=(l+r)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
pushUp(rt);
}
void change(int l,int r ,int rt,int L,int R,int val)
{
if(L<=l&&r<=R)
{
sum[rt]+=val*(l-r+1);
add[rt]+=val;
return ;
}
int mid=(r+l)>>1;
if(mid>=L)
change(l,mid,rt<<1,L,R,val);
if(mid<R)
change(mid+1,r,rt<<1|1,L,R,val);
}
int ask(int l,int r,int rt,int L,int R)
{
if(L<=l&&r<=R)
return sum[rt];
int mid=(l+r)>>1;
if(add[rt])
{
sum[rt<<1]+=(mid-l+1)*add[rt];
add[rt<<1]+=add[rt];
sum[rt<<1|1]+=(r-mid)*add[rt];
add[rt<<1|1]+=add[rt];
add[rt]=0;
}
int ans=0;
if(mid>=L)ans+=ask(l,mid,rt<<1,L,R);
if(mid<R)ans+=ask(mid+1,r,rt<<1|1,L,R);
return ans;
}
void change(int x,int y,int val)
{
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])swap(x,y);
change(1,n,1,tid[top[x]],tid[x],val);
x=fa[top[x]];
}
if(dep[x]<dep[y])swap(x,y);
change(1,n,1,tid[y],tid[x],val);
}
int ask(int x,int y)
{
int ans=0;
while(top[x]!=top[y])
{
if(dep[top[x]]<dep[top[y]])swap(x,y);
ans+=ask(1,n,1,tid[top[x]],tid[x]);
}
if(dep[x]<dep[y])swap(x,y);
ans+=ask(1,n,1,tid[y],tid[x]);
return ans;
}
void init()
{
memset(head,0,sizeof(head));
memset(son,0,sizeof(son));
memset(add,0,sizeof(add));
edge=1;
total=0;
}
int main()
{
int x,y,c;
char op[5];
while(scanf("%d%d%d",&n,&m,&t)==3)
{
init();
for(int i=1;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
addEdge(x,y);
}
dfs(1,1,1);
dfs(1,1);
for(int i=1;i<=n;i++)
num[tid[i]]=a[i];
build(1,n,1);
//cout<<"haha"<<endl;
//cout<<t<<endl;
while(t--)
{
scanf("%s",op);
if(op[0]=='Q')
{
scanf("%d",&x);
printf("%d\n",ask(x,x));
}
else
{
scanf("%d%d%d",&x,&y,&c);
if(op[0]=='I')
change(x,y,c);
else
change(x,y,-c);
}
}
}
}

本文通过《指环王》中阿拉贡王子抵御敌人入侵的故事背景,介绍了一种树链剖分算法的具体实现过程。该算法能高效地处理树形结构上的路径增删操作及查询特定节点的实时值,适用于解决大规模数据集的问题。
300

被折叠的 条评论
为什么被折叠?



