Give you a sequence of N(N≤100,000)integers : a1,...,an(0<ai≤1000,000,000). There are Q(Q≤100,000) queries. For each query l,rl,r you have to calculate gcd(al,,al+1,...,ar) and count the number of pairs(l',r')(1≤l<r≤N)such that gcd(al',al'+1,...,ar') equal gcd(al,al+1,...,ar).
Input
The first line of input contains a number T, which stands for the number of test cases you need to solve.
The first line of each case contains a number NN, denoting the number of integers.
The second line contains NN integers, a1,...,an(0<ai≤1000,000,000).
The third line contains a number Q, denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,rili,ri, stand for the i-th queries.
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes, tt means the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l',r') such that gcd(al',al'+1,...,ar') equal gcd(al,al+1,...,ar).
Sample Input
1
5
1 2 4 6 7
4
1 5
2 4
3 4
4 4
Sample Output
Case #1:
1 8
2 4
2 4
6 1
想到lST了,但是第二步统计数量没想好。
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<vector>
#include<algorithm>
#include<cmath>
#include<map>
#define N 100005
using namespace std;
int dp[N][18];
int n;
int gcd(int a,int b)
{
return a%b==0?b:gcd(b,a%b);
}
void RMQ()
{
int cnt=ceil(log(n*1.0)/log(2.0));
for(int i=1;i<=cnt;i++)
{
for(int j=1;j<=n;j++)
{
dp[j][i]=dp[j][i-1];
if(j+(1<<(i-1))<=n)
dp[j][i]=gcd(dp[j][i],dp[j+(1<<(i-1))][i-1]);
}
}
}
int getGCD(int l,int r)
{
int cnt=(int)log2((double)(r-l+1));
return gcd(dp[l][cnt],dp[r-(1<<cnt)+1][cnt]);
}
map<int,long long> mp;
void init()
{
mp.clear();
for(int i=1;i<=n;i++)
{
int g=dp[i][0],j=i;
while(j<=n)
{
int l=j,r=n;
while(l<r)
{
int mid=(l+r+1)>>1;
if(getGCD(i,mid)==g) l=mid;
else r=mid-1;
}
mp[g]+=l-j+1;
j=l+1;
g=getGCD(i,j);
}
}
}
int main()
{
//cout<<log2(100000);
int t;
int l,r;
scanf("%d",&t);
int ca=1;
while(t--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&dp[i][0]);
RMQ();
init();
//cout<<"jaja";
int q;
scanf("%d",&q);
printf("Case #%d:\n",ca++);
while(q--)
{
scanf("%d%d",&l,&r);
int gcdd=getGCD(l,r);
printf("%d %lld\n",gcdd,mp[gcdd]);
}
}
return 0;
}

本文介绍了一种解决区间GCD查询问题的方法,并通过预处理实现快速查询,同时统计区间内具有相同GCD值的子区间的数量。采用RMQ算法进行区间最大公约数的计算,使用map来统计相同GCD值的出现频率。
10万+

被折叠的 条评论
为什么被折叠?



