数据结构——浙大版中国大学mooc(week5)

本文围绕浙大版中国大学MOOC数据结构课程的堆部分进行讲解,包括小顶堆的路径操作、文件传输问题以及Huffman编码的实现。通过实例介绍如何处理堆中路径、网络文件传输的可能性以及判断Huffman编码的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程给出代码

C语言描述:堆的描述和操作

typedef struct HNode *Heap; /* 堆的类型定义 */
struct HNode {
    ElementType *Data; /* 存储元素的数组 */
    int Size;          /* 堆中当前元素个数 */
    int Capacity;      /* 堆的最大容量 */
};
typedef Heap MaxHeap; /* 最大堆 */
typedef Heap MinHeap; /* 最小堆 */
 
#define MAXDATA 1000  /* 该值应根据具体情况定义为大于堆中所有可能元素的值 */
 
MaxHeap CreateHeap( int MaxSize )
{ /* 创建容量为MaxSize的空的最大堆 */
 
    MaxHeap H = (MaxHeap)malloc(sizeof(struct HNode));
    H->Data = (ElementType *)malloc((MaxSize+1)*sizeof(ElementType));
    H->Size = 0;
    H->Capacity = MaxSize;
    H->Data[0] = MAXDATA; /* 定义"哨兵"为大于堆中所有可能元素的值*/
 
    return H;
}
 
bool IsFull( MaxHeap H )
{
    return (H->Size == H->Capacity);
}
 
bool Insert( MaxHeap H, ElementType X )
{ /* 将元素X插入最大堆H,其中H->Data[0]已经定义为哨兵 */
    int i;
  
    if ( IsFull(H) ) { 
        printf("最大堆已满");
        return false;
    }
    i = ++H->Size; /* i指向插入后堆中的最后一个元素的位置 */
    for ( ; H->Data[i/2] < X; i/=2 )
        H->Data[i] = H->Data[i/2]; /* 上滤X */
    H->Data[i] = X; /* 将X插入 */
    return true;
}
 
#define ERROR -1 /* 错误标识应根据具体情况定义为堆中不可能出现的元素值 */
 
bool IsEmpty( MaxHeap H )
{
    return (H->Size == 0);
}
 
ElementType DeleteMax( MaxHeap H )
{ /* 从最大堆H中取出键值为最大的元素,并删除一个结点 */
    int Parent, Child;
    ElementType MaxItem, X;
 
    if ( IsEmpty(H) ) {
        printf("最大堆已为空");
        return ERROR;
    }
 
    MaxItem = H->Data[1]; /* 取出根结点存放的最大值 */
    /* 用最大堆中最后一个元素从根结点开始向上过滤下层结点 */
    X = H->Data[H->Size--]; /* 注意当前堆的规模要减小 */
    for( Parent=1; Parent*2<=H->Size; Parent=Child ) {
        Child = Parent * 2;
        if( (Child!=H->Size) && (H->Data[Child]<H->Data[Child+1]) )
            Child++;  /* Child指向左右子结点的较大者 */
        if( X >= H->Data[Child] ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            H->Data[Parent] = H->Data[Child];
    }
    H->Data[Parent] = X;
 
    return MaxItem;
} 
 
/*----------- 建造最大堆 -----------*/
void PercDown( MaxHeap H, int p )
{ /* 下滤:将H中以H->Data[p]为根的子堆调整为最大堆 */
    int Parent, Child;
    ElementType X;
 
    X = H->Data[p]; /* 取出根结点存放的值 */
    for( Parent=p; Parent*2<=H->Size; Parent=Child ) {
        Child = Parent * 2;
        if( (Child!=H->Size) && (H->Data[Child]<H->Data[Child+1]) )
            Child++;  /* Child指向左右子结点的较大者 */
        if( X >= H->Data[Child] ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            H->Data[Parent] = H->Data[Child];
    }
    H->Data[Parent] = X;
}
 
void BuildHeap( MaxHeap H )
{ /* 调整H->Data[]中的元素,使满足最大堆的有序性  */
  /* 这里假设所有H->Size个元素已经存在H->Data[]中 */
 
    int i;
 
    /* 从最后一个结点的父节点开始,到根结点1 */
    for( i = H->Size/2; i>0; i-- )
        PercDown( H, i );
}

C语言描述:集合的定义和并集操作

#define MAXN 1000                  /* 集合最大元素个数 */
typedef int ElementType;           /* 默认元素可以用非负整数表示 */
typedef int SetName;               /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MAXN]; /* 假设集合元素下标从0开始 */
 
void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
    /* 保证小集合并入大集合 */
    if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
        S[Root2] += S[Root1];     /* 集合1并入集合2  */
        S[Root1] = Root2;
    }
    else {                         /* 如果集合1比较大 */
        S[Root1] += S[Root2];     /* 集合2并入集合1  */
        S[Root2] = Root1;
    }
}
 
SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
    if ( S[X] < 0 ) /* 找到集合的根 */
        return X;
    else
        return S[X] = Find( S, S[X] ); /* 路径压缩 */
}

05-树7 堆中的路径 (25 分)

将一系列给定数字插入一个初始为空的小顶堆H[]。随后对任意给定的下标i,打印从H[i]到根结点的路径。
输入格式:
每组测试第1行包含2个正整数N和M(≤1000),分别是插入元素的个数、以及需要打印的路径条数。下一行给出区间[-10000, 10000]内的N个要被插入一个初始为空的小顶堆的整数。最后一行给出M个下标。
输出格式:
对输入中给出的每个下标i,在一行中输出从H[i]到根结点的路径上的数据。数字间以1个空格分隔,行末不得有多余空格。

#include<stdio.h>

#define MAXN 1001
#define MINH -10001
int H[MAXN],size;

void Insert(int x){
	int i;
	for(i=++size; H[i/2]> x; i/=2 )
		H[i]=H[i/2];
	H[i]=x;
}

void Creat(int n){
	int i,x;
	H[0]=MINH;
	size=0;
	for(i=0;i<n;i++){
		scanf("%d",&x);
		Insert(x);
	}
}

void Print(int m){
	int i,j;
	for(i=0;i<m;i++){
		scanf("%d",&j);
		printf("%d",H[j]);
		while(j>1){
			j/=2;
			printf(" %d",H[j]);
		}
		printf("\n");
	}
}

int main(){
	int n,m;
	scanf("%d %d",&n,&m);
	Creat(n);
	Print(m);
    return 0;
}

05-树8 File Transfer (25 分)

We have a network of computers and a list of bi-directional connections. Each of these connections allows a file transfer from one computer to another. Is it possible to send a file from any computer on the network to any other?

Input Specification:
Each input file contains one test case. For each test case, the first line contains N (2≤N≤10^4​ ), the total number of computers in a network. Each computer in the network is then represented by a positive integer between 1 and N. Then in the following lines, the input is given in the format:

#include<stdio.h>

#define MAXN 10000

typedef int SetType[MAXN];

int Find(SetType S, int n){
	if (S[n]<0)
		return n;
	else
		return S[n]=Find(S, S[n]);
}

void Union(SetType S, int a, int b){
	if (S[a]> S[b])
		S[a]=b;
	else{
		if(S[a]==S[b])
			S[a]--;
		S[b]=a;	
	}
}

void Insert( SetType S){
	int a, b;
	int m, n;
	scanf("%d %d",&a, &b);
	m=Find(S, a-1);
	n=Find(S, b-1);
	if(m!=n)
		Union(S, m, n);
}

void Initialization(SetType S, int n){
	for(int i=0;i<n;i++)
		S[i]=-1;
}

void Check( SetType S){
	int a, b;
	int m, n;
	scanf("%d %d",&a, &b);
	m=Find(S, a-1);
	n=Find(S, b-1);
	if(m!=n)
		printf("no\n");
	else
		printf("yes\n");
}

void Finish( SetType S,int n){
	int i,counter=0;
	for(i=0;i<n ;i++){
		if(S[i]<0)
			counter++;
	}
	if(counter==1)
		printf("The network is connected.\n");
	else
		printf("There are %d components.\n",counter);
}

int main(){
	SetType S;
	int n;
	char c;
	scanf("%d\n",&n);
	Initialization(S,n);
	do{
		scanf("%c",&c);
		switch(c){
			case 'I': Insert(S);break;
			case 'C': Check(S);break;
			case 'S': Finish(S,n);break;
		}
	}while(c!='S');
	return 0;
}

05-树9 Huffman Codes (30 分)

In 1953, David A. Huffman published his paper “A Method for the Construction of Minimum-Redundancy Codes”, and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string “aaaxuaxz”, we can observe that the frequencies of the characters ‘a’, ‘x’, ‘u’ and ‘z’ are 4, 2, 1 and 1, respectively. We may either encode the symbols as {‘a’=0, ‘x’=10, ‘u’=110, ‘z’=111}, or in another way as {‘a’=1, ‘x’=01, ‘u’=001, ‘z’=000}, both compress the string into 14 bits. Another set of code can be given as {‘a’=0, ‘x’=11, ‘u’=100, ‘z’=101}, but {‘a’=0, ‘x’=01, ‘u’=011, ‘z’=001} is NOT correct since “aaaxuaxz” and “aazuaxax” can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:
Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] … c[N] f[N]
where c[i] is a character chosen from {‘0’ - ‘9’, ‘a’ - ‘z’, ‘A’ - ‘Z’, ‘_’}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤1000), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]
where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0’s and '1’s.

Output Specification:
For each test case, print in each line either “Yes” if the student’s submission is correct, or “No” if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.


#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define Maxn 64
 
int N, w[Maxn];
char ch[Maxn];
int codelen, cnt1, cnt2;
 
typedef struct TreeNode* Tree;
struct TreeNode {
    int Weight;
    Tree Left, Right;
};
 
typedef struct HeapNode* Heap;
struct HeapNode {
    struct TreeNode Data[Maxn];
    int Size;
};
 
Tree CreatTree() {
    Tree T;
    T = (Tree)malloc(sizeof(struct TreeNode));
    T->Left = T->Right = NULL;
    T->Weight = 0;
    return T;
}
 
Heap CreatHeap() {
    Heap H;
    H = (Heap)malloc(sizeof(struct HeapNode));
    H->Size = 0;
    H->Data[0].Weight = -1;
    return H;
}
 
void Insert(Heap H, struct TreeNode T) {
    int i = ++H->Size;
    for( ; T.Weight < H->Data[i/2].Weight; i /= 2)
        H->Data[i] = H->Data[i/2];
    H->Data[i] = T;
}
 
Tree Delete(Heap H) {
    int parent, child;
    struct TreeNode Temp = H->Data[H->Size--];
    Tree T = CreatTree();
    *T = H->Data[1];
    for(parent = 1; 2*parent <= H->Size; parent = child) {
        child = 2 * parent;
        if(child != H->Size && H->Data[child].Weight > H->Data[child+1].Weight) child++;
        if(Temp.Weight < H->Data[child].Weight) break;
        H->Data[parent] = H->Data[child];
    }
    H->Data[parent] = Temp;
    return T;
}
 
Tree Huffman(Heap H) {
    Tree T = CreatTree(); //分配空间
    while(H->Size != 1) {
        T->Left = Delete(H);
        T->Right = Delete(H);
        T->Weight = T->Left->Weight + T->Right->Weight;
        //printf("l = %d, r = %d, t = %d\n", T->Left->Weight, T->Right->Weight, T->Weight);
        Insert(H, *T);
    }
    T = Delete(H);
    return T;
}
 
void PreTravel(Tree T) {
    if(T) {
        printf("%d ", T->Weight);
        PreTravel(T->Left);
        PreTravel(T->Right);
    }
}
 
int WPL(Tree T, int Depth) {
    if(!T->Left && !T->Right) 
    	return Depth*T->Weight; 
    else 
    	return WPL(T->Left, Depth+1) + WPL(T->Right, Depth+1);
}
 
void JudgeTree(Tree T) {
    if(T) {
        if(T->Left && T->Right) cnt2++;
        else if(!T->Left && !T->Right) cnt1++;
        else cnt1 = 0;
        JudgeTree(T->Left);
        JudgeTree(T->Right);
    }
}
 
int Judge() {
    int i, j, wgh, flag = 1;
    char s1[Maxn], s2[Maxn];
    Tree T = CreatTree(), pt = NULL;
    for(i = 0; i < N; i++) {
        scanf("%s%s", s1, s2);
        if(strlen(s2) > N) return 0;
        for(j = 0; s1[0] != ch[j]; j++); wgh = w[j];
        pt = T;//每次建树前先将指针移动到根节点上;
        for(j = 0; s2[j]; j++) {
            if(s2[j] == '0') {
                if(!pt->Left) pt->Left = CreatTree();
                pt = pt->Left;
            }
            if(s2[j] == '1') {
                if(!pt->Right) pt->Right = CreatTree();
                pt = pt->Right;
            }
            if(pt->Weight) flag = 0;
            if(!s2[j+1]) {
                if(pt->Left || pt->Right) flag = 0;//判断是否为前缀
                pt->Weight = wgh;
            }
            //printf("w = %d\n", pt->Weight);
        }
    }
    if(!flag) return 0;
    cnt1 = cnt2 = 0;
    JudgeTree(T);//判断是否不存在度数1的节点
    if(cnt1 != cnt2 + 1) return 0;
    //printf("wpl = %d\n", WPL(T, 0));
    if(codelen == WPL(T, 0)) return 1;
    else return 0;
}
 
int main() {
    int i, n;
    Heap H;
    Tree T;
    H = CreatHeap();
    T = CreatTree();
    scanf("%d", &N);
    for(i = 0; i < N; i++) {
        getchar();
        scanf("%c %d", &ch[i], &w[i]);
        H->Data[H->Size].Left = H->Data[H->Size].Right = NULL;
        T->Weight = w[i];
        Insert(H, *T);
    }
    //for(i = 1; i <= H->Size; i++) printf("%d ", H->Data[i].Weight);
    T = Huffman(H);     //PreTravel(T);
    codelen = WPL(T, 0);
    scanf("%d", &n);
    while(n--) {
        if(Judge()) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}

没时间做了代码思路1代码思路2代码思路3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值