ZZULIOJ--1272: 复习时间

一道关于复习效率的数学问题,求解一晚上最多复习课程的最高效率值。关键在于找到最小难度课程并计算效率差的平方。通过动态规划找到最优解,思路源于某博客文章链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间限制: 1 Sec 内存限制: 128 MB
提交: 24 解决: 19
[状态] [提交] [命题人:admin]
题目描述
为了能过个好年,xhd开始复习了,于是每天晚上背着书往教室跑。xhd复习有个习惯,在复习完一门课后,他总是挑一门更简单的课进行复习,而他复习这门课的效率为两门课的难度差的平方,而复习第一门课的效率为100和这门课的难度差的平方。xhd这学期选了n门课,但是一晚上他最多只能复习m门课,请问他一晚上复习的最高效率值是多少?

输入
输入数据的第一行是一个数据T,表示有T组数据。
每组数据的第一行是两个整数n(1 <= n <= 40),m(1 <= m <= n)。
接着有n行,每行有一个正整数a(1 <= a <= 100),表示这门课的难度值。

输出
对于每组输入数据,输出一个整数,表示最高效率值。

样例输入 Copy
2
2 2
52
25
12 5
89
64
6
43
56
72
92
23
20
22
37
31
样例输出 Copy
5625
8836
这道题的关键就是找到规律,一开始我也很懵,感觉这是一道超级麻烦的题目,但是在高人指点过后,发现了规律,就是找出最小的然后平方就是啦
题意:复习第一门课的效率为100和这门课的难度差的平方。

看作:一开始便挑选了一门复习难度为100且复习效率为0的特殊课程S

这是一道经典的位运算题目,考察对二进制的理解和位运算的熟练程度。 题目描述: 给定一个长度为 $n$ 的数组 $a$,初始时每个数的值都为 $0$。现在有 $m$ 个操作,每个操作为一次询问或修改。 对于询问,给出两个整数 $l,r$,求 $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$ 的值。 对于修改,给出一个整数 $x$,表示将 $a_x$ 的值加 $1$。 输入格式: 第一行两个整数 $n,m$。 接下来 $m$ 行,每行描述一次操作,格式如下: 1 l r:表示询问区间 $[l,r]$ 的异或和。 2 x:表示将 $a_x$ 的值加 $1$。 输出格式: 对于每个询问操作,输出一个整数表示答案,每个答案占一行。 数据范围: $1 \leq n,m \leq 10^5$,$0 \leq a_i \leq 2^{30}$,$1 \leq l \leq r \leq n$,$1 \leq x \leq n$ 输入样例: 5 5 2 1 2 3 1 2 4 2 2 1 1 5 输出样例: 0 2 解题思路: 对于询问操作,可以利用异或的性质,即 $a \oplus b \oplus a = b$,将 $a_l \oplus a_{l+1} \oplus \cdots \oplus a_r$ 转化为 $(a_1 \oplus \cdots \oplus a_{l-1}) \oplus (a_1 \oplus \cdots \oplus a_r)$,因为两个前缀异或后的结果可以相互抵消,最后的结果即为 $a_1 \oplus \cdots \oplus a_{l-1} \oplus a_1 \oplus \cdots \oplus a_r = a_l \oplus \cdots \oplus a_r$。 对于修改操作,可以将 $a_x$ 对应的二进制数的每一位都分离出来,然后对应位置进行修改即可。由于只有加 $1$ 操作,所以只需将最后一位加 $1$ 即可,其余位不变。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值