[BZOJ1688][Usaco2005 Open]Disease Manangement 疾病管理(状压dp)

本文介绍了一种使用动态规划解决疾病状态选择问题的方法。通过定义状态f[i]为疾病状态为i时的最大牛数,利用位操作进行状态转移,最终求得在限制条件下最多的牛数。特别注意循环顺序的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

传送门

题解

状态:f[i]表示选出的疾病状态为i的最多牛数。
转移:f[t[i]|j]=max(f[t[i]|j],f[j]+1); 其中t[i]表示i这头牛的疾病状态。
目标:所有i符合条件的f[i]取max

注意:循环的顺序!刚开始出不来正确答案,看了hzwer的代码发现自己一维循环反了。注意上面的转移必须从上个状态转移过来,所以避免这次已经转移过,要从大到小循环,类似一个背包。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int max_n=1000;
int N,D,K,tot,num,x,ans;
int t[max_n+1],f[1<<15];
inline bool ok(int x,int cnt=0){
    for (int i=0;i<D;++i) 
      if ((x>>i)&1) cnt++; 
    return (cnt<=K)?1:0;
}
int main(){
    scanf("%d%d%d",&N,&D,&K); tot=(1<<D)-1;
    for (int i=1;i<=N;++i){
        scanf("%d",&num);
        for (int j=1;j<=num;++j) scanf("%d",&x),t[i]|=(1<<(x-1));
    } 
    for (int i=1;i<=N;++i)
      for (int j=tot;j>=0;--j) 
        f[t[i]|j]=max(f[t[i]|j],f[j]+1); 
    for (int i=0;i<=tot;++i) 
      if (ok(i)) 
        ans=max(ans,f[i]);
    printf("%d\n",ans);
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值