走迷宫

例题:【递归入门】走迷宫

Description

有一个nm格的迷宫(表示有n行、m列),其中有可走的也有不可走的,如果用1表示可以走,0表示不可以走,文件读入这nm个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用-l表示无路)。
  请统一用 左上右下的顺序拓展,也就是 (0,-1),(-1,0),(0,1),(1,0)

Input

第一行是两个数n,m( 1 < n , m < 15 ),接下来是m行n列由1和0组成的数据,最后两行是起始点和结束点。

Output

所有可行的路径,描述一个点时用(x,y)的形式,除开始点外,其他的都要用“->”表示方向。
  如果没有一条可行的路则输出-1。

Sample Input Copy

5 6
1 0 0 1 0 1
1 1 1 1 1 1
0 0 1 1 1 0
1 1 1 1 1 0
1 1 1 0 1 1
1 1
5 6
Sample Output Copy

(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6)
(1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)

DFS

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
using namespace std;

int map[16][16]={0};
int startx=0,starty=0;
int endx=0,endy=0;
int m=0,n=0;
int flag;
vector<pair<int,int>> res;

void dfs(int x,int y){
    pair<int,int> temp(x+1,y+1);
    map[x][y]=0;//决定走就变为0,无法行走
    res.push_back(temp);
    if(x==endx-1&&y==endy-1){
        flag=true;
        for(int i=0;i<res.size();i++){
            printf("(%d,%d)",res[i].first,res[i].second);
            if(i!=res.size()-1)
                printf("->");
            else
                printf("\n");
        }
    }
    else{
    	//也可以额外添加对该行/列全空的情况剪枝,避免时间复杂度过高
        if(y-1>=0&&map[x][y-1]==1)//向左
            dfs(x,y-1);
        if(x-1>=0&&map[x-1][y]==1){//向上
            dfs(x-1,y);
        }
        if(y+1<n&&map[x][y+1]==1)//向右
            dfs(x,y+1);
        if(x+1<m&&map[x+1][y]==1)//向下
            dfs(x+1,y);
    }
    map[x][y]=1;//恢复
    res.pop_back();
    return;
}

int main(){
    while(scanf("%d%d",&m,&n)!=EOF){
        flag=false;
        //memset(map,0,sizeof(map));
        res.clear();
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                scanf("%d",&map[i][j]);
            }
        }
        scanf("%d%d",&startx,&starty);
        scanf("%d%d",&endx,&endy);
        dfs(startx-1,starty-1);
        if(flag==false)
            printf("-1\n");
    }
    
}

问题描述: 以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出从入口(0,0)到出口(m-1,n-1)的通路和通路总数,或得出没有通路的结论。例如下图, 0(入口) 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0(出口) 从入口到出口有6条不同的通路。 而下图: 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 从入口到出口则没有通路。 算法设计: 给定一个m*n的长方阵表示迷宫,设计算法输出入口到出口的通路和通路总数,或得出没有通路的结论。 算法提示: 和皇后问题与分书问题类似。可以用二维数组存储迷宫数据,对于迷宫中任一位置,均可约定有东、南、西、北四个方向可通。从当前位置a(用(x,y)表示一个位置,假定它是以向右的x轴和向下的y轴组成的平面上的一个点)出发依次尝试四个方向是否有路,若某个方向的位置b可通,则按照同样的方法继续从b出发寻找。若到达出口,则找到一条通路。 数据输入: 由文件input.txt 提供输入数据。第一是m和n的值,空分隔,其后共m。每有n个数字,数和数之间用空分隔。 结果输出: 将计算出的所有从入口到出口的通路输出到文件output.txt 中。若没有通路,则将0写入文件中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值