sklearn 划分数据集

本文介绍如何使用Sklearn库中的train_test_split函数来划分数据集为训练集和测试集,通过设置测试集比例、随机状态和分层抽样参数,确保数据划分的合理性和有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#-*- coding: UTF-8 -*-

from sklearn.model_selection import train_test_split



def split(dataset, labelset, test_size, train_savefile, test_savefile):

    # split into training set and test set
    x_train, x_test, y_train, y_test = train_test_split(dataset, labelset, test_size=test_size, random_state=42, stratify=labelset )
  
    savetxt(train_savefile, x_train)
    savetxt(test_savefile, x_test)

    return x_train, x_test


def savetxt(path, np_array):
    with open(file=path, mode='w', encoding='utf-8') as fw:
        fw.writelines(np_array)

def reader_data(datafile):
    data_list = []
    with open(datafile, mode='r', encoding='utf-8') as f:
        for line in f:
            data_list.append(line)

    return data_list

if __name__ == '__main__':

    datafile = 'data/output/tra-set0603_0.9'
    dataset = reader_data(datafile)
    label_file = 'data/output/tra-set0603_0.9_label'
    labelset = reader_data(label_file)

    test_size = 0.2
    train_savefile = 'data/output/raw_0.9/raw_train.txt'
    test_savefile = 'data/output/raw_0.9/raw_test.txt'
    split(dataset, labelset, test_size, train_savefile, test_savefile)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值