题目地址:点击打开链接
题意:求1-n中包含13且能被13整除的数的数量。
思路:dp[i][j][k],i表示位数,j表示余数,k表示末尾是1、末尾不是1、含有13.
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 15;
int a[maxn], dp[maxn][maxn][3];
int dfs(int pos, int pre, int mod, int limit)
{
if(pos == -1) return (pre==2 && !mod);
if(!limit && dp[pos][mod][pre] != -1) return dp[pos][mod][pre];
int up = limit ? a[pos] : 9;
int tmp = 0;
for(int i = 0; i <= up; i++)
{
int tmod = (mod*10+i)%13;
if((pre == 1 && i == 3) || pre == 2)
tmp += dfs(pos-1, 2, tmod, limit&&a[pos]==i);
else
tmp += dfs(pos-1, i==1, tmod, limit&&a[pos]==i);
}
if(!limit) dp[pos][mod][pre] = tmp;
return tmp;
}
int solve(int x)
{
int pos = 0;
while(x)
{
a[pos++] = x%10;
x /= 10;
}
return dfs(pos-1, 0, 0, 1);
}
int main(void)
{
int n;
memset(dp, -1, sizeof(dp));
while(cin >> n)
printf("%d\n", solve(n));
return 0;
}
B-number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5789 Accepted Submission(s): 3332
Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
Output
Print each answer in a single line.
Sample Input
13 100 200 1000
Sample Output
1 1 2 2
Author
wqb0039
Source