插值条件
φ(xi)=f(xi)=yi,i=0,1,...,n\varphi (x_i)=f(x_i)=y_i,i=0,1,...,nφ(xi)=f(xi)=yi,i=0,1,...,n
唯一性定理
给定{(xi,yi)∣i=0,1,...,n}\left \{ (x_i,y_i) |i=0,1,...,n \right \}{(xi,yi)∣i=0,1,...,n},则满足插值条件的nnn次多项式pn(x)p_n(x)pn(x)唯一.
nnn次拉格朗日插值多项式
Ln(x)=∑k=0nlk(x)ykL_n(x)=\sum_{k=0}^n l_k(x)y_kLn(x)=k=0∑nlk(x)yk
Rn(x)=f(n+1)(ξx)(n+1)!ωn+1(x)R_n(x)=\frac{f^{(n+1)}(\xi_x)}{(n+1)!}\omega_{n+1}(x)Rn(x)=(n+1)!f(n+1)(ξx)ωn+1(x)
ξx∈(a,b)且与x有关\xi_x\in (a,b)且与x有关ξx∈(a,b)且与x有关
nnn次拉格朗日基函数
形式
lk(x)=∏j=0j≠knx−xjxk−xjl_k(x)= \prod_{\substack{j=0\\ j\neq k}}^n \frac{x-x_j}{x_k-x_j}lk(x)=j=0j=k∏nxk−xjx−xj
性质
取f(x)=xk,k=0,1,...⇒∑i=0nli(x)xik=xk取f(x)=x^k,k=0,1,... \Rightarrow \sum_{i=0}^n l_i(x)x_i^k=x^k取f(x)=xk,k=0,1,...⇒i=0∑nli(x)xik=xk
特别地,当k=0时,∑i=0nli(x)=1特别地,当k=0时, \sum_{i=0}^n l_i(x)=1特别地,当k=0时,i=0∑nli(x)=1
Newton插值多项式
差商
形式
f[x0,x1]=f(x1)−f(x0)x1−x0f[x_0,x_1]=\frac{f(x_1)-f(x_0)}{x_1-x_0}f[x0,x1]=x1−x0f(x1)−f(x0)
.........
f[x0,x1,...,xn]=f[x1,x2,...,xn]−f[x0,x1,...,xn−1]xn−x0f[x_0,x_1,...,x_n]=\frac{f[x_1,x_2,...,x_n]-f[x_0,x_1,...,x_{n-1}]}{x_n-x_0}f[x0,x1,...,xn]=xn−x0f[x1,x2,...,xn]−f[x0,x1,...,xn−1]
性质
1.线性组合
2.任意排列
3.n⩾kn \geqslant kn⩾k时,f[x0,x1,...,xn−1,x]f[x_0,x_1,...,x_{n-1},x]f[x0,x1,...,xn−1,x]是n−kn-kn−k次多项式;n<kn < kn<k时,f[x0,x1,...,xn−1,x]=0f[x_0,x_1,...,x_{n-1},x]=0f[x0,x1,...,xn−1,x]=0
4.f[x0,x1,...,xk]=f(k)(ξ)k!f[x_0,x_1,...,x_k]=\frac{f^{(k)}(\xi)}{k!}f[x0,x1,...,xk]=k!f(k)(ξ)
Newton插值多项式
形式
f(x)=Nn(x)+Rn(x)f(x) = N_n(x)+R_n(x)f(x)=Nn(x)+Rn(x)
Nn(x)=f(x0)+(x−x0)f[x0,x1]+...+(x−x0)(x−x1)...(x−xn−1)f[x0,x1,...,xn]N_n(x)=f(x_0) + (x-x_0)f[x_0,x_1] + ... + (x-x_0)(x-x_1)...(x-x_{n-1})f[x_0,x_1,...,x_n]Nn(x)=f(x0)+(x−x0)f[x0,x1]+...+(x−x0)(x−x1)...(x−xn−1)f[x0,x1,...,xn]
Rn(x)=(x−x0)(x−x1)...(x−xn)f[x0,x1,...,xn,x]R_n(x)=(x-x_0)(x-x_1)...(x-x_n)f[x_0,x_1,...,x_n,x]Rn(x)=(x−x0)(x−x1)...(x−xn)f[x0,x1,...,xn,x]
f[x0,x1,...,xn,x]=f(n)(ξx)(n+1)!f[x_0,x_1,...,x_n,x]=\frac{f^{(n)}(\xi_x)}{(n+1)!}f[x0,x1,...,xn,x]=(n+1)!f(n)(ξx)
递推
Nk+1(x)=Nk(x)+ωk+1(x)f[x0,x1,...,xk+1]N_{k+1}(x)=N_{k}(x)+\omega_{k+1}(x)f[x_0,x_1,...,x_{k+1}]Nk+1(x)=Nk(x)+ωk+1(x)f[x0,x1,...,xk+1]
Hermite插值
待续。。。
正则多项式
待续。。。
最小二乘法
给定数据集{(xi,yi)∣i=0,1,...,m}\left \{ (x_i,y_i) |i=0,1,...,m \right \}{(xi,yi)∣i=0,1,...,m},经验函数y=∑j=0nφj(x)ajy=\sum_{j=0}^n \varphi_j(x) a_jy=∑j=0nφj(x)aj,则φj=(φj(x0),φj(x1),...,φj(xm))T\varphi_j=(\varphi_j(x_0),\varphi_j(x_1),...,\varphi_j(x_m))^Tφj=(φj(x0),φj(x1),...,φj(xm))T,f=(y0,y1,...,ym)Tf=(y_0,y_1,...,y_m)^Tf=(y0,y1,...,ym)T,(φj,φk)=∑i=0mρ(xi)φj(xi)φk(xi)(\varphi_j,\varphi_k)=\sum_{i=0}^m\rho(x_i)\varphi_j(x_i)\varphi_k(x_i)(φj,φk)=∑i=0mρ(xi)φj(xi)φk(xi),(f,φj)=∑i=0mρ(xi)φj(xi)yi(f,\varphi_j)=\sum_{i=0}^m\rho(x_i)\varphi_j(x_i)y_i(f,φj)=∑i=0mρ(xi)φj(xi)yi
正则方程组为
[(φ0,φ0)(φ0,φ1)...(φ0,φn)(φ1,φ0).....................(φn,φ0)......(φn,φn)][a0a1...an]=[(f,φ0)(f,φ1)...(f,φn)]\begin{bmatrix}
(\varphi_0,\varphi_0) & (\varphi_0,\varphi_1) & ... & (\varphi_0,\varphi_n)\\
(\varphi_1,\varphi_0) & ... & ... & ...\\
... & ... & ... & ...\\
(\varphi_n,\varphi_0) & ... & ... & (\varphi_n,\varphi_n)
\end{bmatrix}\begin{bmatrix}
a_0\\
a_1\\
...\\
a_n
\end{bmatrix}=
\begin{bmatrix}
(f,\varphi_0)\\
(f,\varphi_1)\\
...\\
(f,\varphi_n)
\end{bmatrix}
(φ0,φ0)(φ1,φ0)...(φn,φ0)(φ0,φ1).....................(φ0,φn)......(φn,φn)a0a1...an=(f,φ0)(f,φ1)...(f,φn)
拟合曲线
φ∗(x)=pn∗(x)=∑i=0nφi∗(x)ai∗\varphi^*(x)=p_n^*(x)=\sum_{i=0}^n\varphi_i^*(x)a_i^*φ∗(x)=pn∗(x)=i=0∑nφi∗(x)ai∗
均方误差
∥δ∗∥2=[∑i=0mρi(φ∗(xi)−yi)2]12\left \| \delta^* \right \|_2=\left [ \sum_{i=0}^m\rho_i \left ( \varphi^*(x_i)-y_i \right )^2 \right ]^{\frac{1}{2}}∥δ∗∥2=[i=0∑mρi(φ∗(xi)−yi)2]21
本文详细介绍了多项式插值理论,包括拉格朗日插值与Newton插值的方法及应用,同时探讨了最小二乘法原理及其在数据拟合中的作用。
1280

被折叠的 条评论
为什么被折叠?



