从0开始学习机器学习--Day22--优化总结以及误差作业(上)

在之前,我们了解到在算法存在高方差问题时,扩充训练集的数据量有助于降低验证集的误差。那么,是否有其他情况我们可以通过增加数据量来优化算法呢?

假如我们有这样一个学习问题:我需要在{to,too,two}中选出一个填入以下句子:For breakfast, I ate __eggs.在这种问题中,句子的信息越多,算法越有可能得到答案,也就是说训练集数据额定增大是有益的。在房价问题中,假如我们只给了房屋面积的大小以及价格,单纯只靠这个预测到真实的价格的难度是很大的,毕竟还需要考虑所处位置的地价。

其实,这类问题概括起来,只要解决了偏差和方差的问题就可以了,那么我们要做的就是让算法的参数尽可能地多的同时,再增加训练集的数量,这样,J_{train}(\theta)在前者的作用下会变得很小,而在庞大的数据量的加持下,J_{train}(\theta)\approx J_{test}(\theta),这样我们就可以保证J_{test}(\theta)很小,从而达到优化算法的目的。

题目:利用水库的水位变化预测大坝的出水量

代码:

import numpy as np
import scipy.io as sio
import matplotlib.pyplot as plt
from scipy.optimize import minimize

def linear(): # 线性回归
    fig, ax = plt.subplo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值