Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
二叉树定义:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
关于二叉树的各种递归函数,我一般都是设置为void型。如果要求某种性质(如高度)或者判断某种条件(如是否平衡),我都会用一个变量(的引用)记录。
class Solution {
public:
bool isBalanced(TreeNode *root) {
bool balanced = true;
isTreeBalanced(root, balanced);
return balanced;
}
private:
void isTreeBalanced(TreeNode *root, bool& balancedSofar) { // 判断整棵树是否平衡
if(root == NULL || !balancedSofar)
return;
if(!isNodeBalanced(root)) {
balancedSofar = false;
return;
}
isTreeBalanced(root->left, balancedSofar);
isTreeBalanced(root->right, balancedSofar);
}
bool isNodeBalanced(TreeNode *root) { // 判断节点是否平衡
if(root == NULL)
return true;
int leftTreeDepth = 0;
height(root->left, 1, leftTreeDepth);
int rightTreeDepth = 0;
height(root->right, 1, rightTreeDepth);
if(leftTreeDepth-rightTreeDepth > 1 || rightTreeDepth - leftTreeDepth > 1)
return false;
else
return true;
}
void height(TreeNode *root, int currentDepth, int& maxD) { // 求树的高度(根为1)
if (root == NULL)
return;
if (root->left == NULL && root->right == NULL && currentDepth > maxD) { // 叶节点
maxD = currentDepth;
return;
}
height(root->left, currentDepth + 1, maxD);
height(root->right, currentDepth + 1, maxD);
}
};