一、摘要
本文介绍谷歌在2025年4月牵头发表的新论文《Transfer Learning for Temporal Link Prediction》。论文主要探讨了动态图中的时间链路预测(TLP)任务,以及如何让模型在不同图之间进行迁移学习。

译文:
基于图的链接预测应用广泛,涵盖从推荐系统到药物发现等领域。时间链接预测(TLP)指的是预测随时间演化的图中的未来链接,这增加了与图的动态性质相关的额外复杂性。最先进的TLP模型将记忆模块与图神经网络结合,以学习传入节点的时间机制和不断演化的图拓扑结构。然而,记忆模块仅存储训练时看到的节点信息,因此此类模型在测试和部署时无法直接应用于全新的图。在这项工作中,我们研究了时间链接预测的一个新的迁移学习任务,并为含记忆模块的模型开发了有效的迁移方法。具体而言,受表明结构信号对TLP任务具有信息性的研究启发,我们在现有的TLP模型架构中添加了一个结构映射模块,该模块学习从图结构(拓扑)特征到记忆嵌入的映射。我们的工作为TLP的无记忆基础模型铺平了道路。
二、核心创新点

时序图

最低0.47元/天 解锁文章
803

被折叠的 条评论
为什么被折叠?



