详解机器学习经典模型(原理及应用)——DBSCAN

一、概念

        DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,它能够在具有噪声的空间数据集中发现任意形状的聚类(即带噪声的聚类模型)。DBSCAN将簇定义为密度相连的点的最大集合,通过在数据空间中找到高密度区域作为簇,同时把孤立点(密度低的点)归为噪声。此外,DBSCAN最大的优势就是它不需要指定聚类簇的数量

二、模型原理

1、相关概念

  • ε-邻域(Epsilon-neighborhood):对于某个点p,以半径ε为边界的区域内所有的点称为该点的ε-邻域。
  • 核心点(Core Point):如果一个点p的ε-邻域内至少有min_samples个点(包括p自己),那么它被称为核心点。
  • 边界点(Border Point):如果一个点p在某个核心点的ε-邻域内,但自身不是核心点,它被称为边界点。
  • 噪声点(Noise Point):如果一个点既不是核心点,也不属于任何核心点的邻域,它被认为是噪声点。
  • 密度直达(Directly Density-Reachable):如果点p是核心点,并且点q在p的ε-邻域内,那么q被称为从p密度直达。
  • 密度可达(Density-Reachable):如果存在一条核心点链表(p1→p2→...→pn),使得每个点从前一个点密度直达,且p1=p,pn=q,则q是从p密度可达的。
  • 密度相连(Density-Connected):如果存在一个点o,使得p和q都从o密度可达
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值