1. 所实现的模型结构

2.代码展示
import torch
import torchvision.datasets
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
#追踪日志
writer = SummaryWriter(log_dir='../LEDR')
#准备数据集
trans = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,),(0.3801,))])
train_set = torchvision.datasets.MNIST(root='E:\learn_pytorch\LE',train=True,transform=trans,download=True)
test_set = torchvision.datasets.MNIST(root='E:\learn_pytorch\LE',train=False,transform=trans,download=True)
#加载数据集
train_data = DataLoader(dataset=train_set,batch_size=64,shuffle=True)
test_data = DataLoader(dataset=test_set,batch_size=64,shuffle=False)
#模型构建
class conv_model_1(torch.nn.Module):
def __init__(self):
su