PyTorch优化函数参考:https://blog.youkuaiyun.com/weixin_42483745/article/details/125036736
1.使用SGD优化函数
1.1代码实现
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
import time
writer = SummaryWriter(log_dir="../LEDR")
#准备数据
x_data = torch.Tensor([[1.0],[2.0],[3.0]])#构造数据矩阵
y_data = torch.Tensor([[2.0],[4.0],[6.0]])
#搭建模型,主要作用就是求y_hat
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel, self).__init__()
self.linear = torch.nn.Linear(1,1)#这里输入和输出的特征都是1,矩阵的列代表features,行代表样本数
def forward(self,x):
y_pred = self.linear(x)
return y_pred
#进行实例化
model = LinearModel()
#construct loss and optimizer
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(params=model.parameters(),lr=0.01)
time1 = time.time()
#进行训练
for epoch in range(1000):
y_pred = model(x_data)
loss = criterion(y_pred,y_data)#损失函数要传入预测值和真实值,前馈过程
#对每轮loss值进行追踪
writer.add_scalar("SGD_loss",loss.item(),epoch)
#先进行梯度清零再更新
optimizer.zero_grad()
loss.backward() # 反馈过程
optimizer.step()
time2 = time.time()
#对梯度和偏置值进行打印输出
print("\tw=",model.linear.weight.item())
print("\tb=",model.linear.bias.item())
#对模型进行测试,只需要进行前馈过程
x_test = torch.Tensor([[4.0]])#两个中括号,要写成1x1的矩阵
y_test = model(x_test)
print("y_pred=",y_test)
#打印运行时间
print(time2-time1)
1.2结果输出以及loss图像展示
D:\Anaconda3\envs\pytorch\python.exe E:/learn_pytorch/LE/pytorch_linear.py
w= 1.9975510835647583
b= 0.005566874053329229
y_pred= tensor([[7.9958]], grad_fn=<AddmmBackward0>)0.7278996753692627
Process finished with exit code 0
1.3 使用带momentum的SGD(效率更优,收敛快,预测好)
optimizer = torch.optim.SGD(params=model.parameters(),lr=0.01,momentum=0.8)
#默认动量使用0.8或者0.9
D:\Anaconda3\envs\pytorch\python.exe E:/learn_pytorch/LE/pytorch_linear.py
w= 1.9999980926513672
b= 4.312112196203088e-06
y_pred= tensor([[8.0000]], grad_fn=<AddmmBackward0>)
0.6276383399963379Process finished with exit code 0
2. 使用Adadelta优化函数
2.1代码修改部分
optimizer = torch.optim.Adadelta(params=model.parameters(),lr=1.0,rho=0.9,eps=1e-6,weight_decay=0)
--rho (float, 可选) – 用于计算平方梯度的运行平均值的系数(默认:0.9)
--eps (float, 可选) – 为了增加数值计算的稳定性而加到分母里的项(默认:1e-6)
--weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认: 0)
2.2 运行结果及图像展示
D:\Anaconda3\envs\pytorch\python.exe E:/learn_pytorch/LE/pytorch_linear.py
w= 1.9920902252197266
b= 0.0012125391513109207
y_pred= tensor([[7.9696]], grad_fn=<AddmmBackward0>)0.7667727470397949
Process finished with exit code 0
3.使用ASGD(随机平均梯度下降)优化函数
3.1代码修改部分
optimizer = torch.optim.ASGD(params=model.parameters(),lr=0.01,lambd=1e-4,alpha=0.75,t0=1e6,weight_decay=0)
3.2运行结果及图像展示
D:\Anaconda3\envs\pytorch\python.exe E:/learn_pytorch/LE/pytorch_linear.py
w= 1.9414650201797485
b= 0.13302306830883026
y_pred= tensor([[7.8989]], grad_fn=<AddmmBackward0>)
0.6747629642486572Process finished with exit code 0