Tensorflow系列之tf.nn.conv2d_transpose中的output_shape

部署运行你感兴趣的模型镜像

在 conv2d_transpose() 中,有一个参数,叫 output_shape, 如果对它传入一个 int list 的话,那么在运行的过程中,output_shape 将无法改变(传入int list已经可以满足大部分应用的需要),但是如何更灵活的控制 output_shape 呢?

  • 传入 tensor
# 可以用 placeholder
outputs_shape = tf.placeholder(dtype=tf.int32, shape=[4])
deconv1 = tf.nn.conv2d_transpose(conv1, filter=de_weight, output_shape=output_shape,
                                 strides=[1, 3, 3, 1], padding='SAME')

# 可以用 inputs 的shape,但是有点改变
inputs_shape = tf.shape(inputs)
outputs_shape = [inputs_shape[0], inputs_shape[1], inputs_shape[2], some_value]
deconv1 = tf.nn.conv2d_transpose(conv1, filter=de_weight, output_shape=outputs_shape,
                                 strides=[1, 3, 3, 1], padding='SAME')         

您可能感兴趣的与本文相关的镜像

ACE-Step

ACE-Step

音乐合成
ACE-Step

ACE-Step是由中国团队阶跃星辰(StepFun)与ACE Studio联手打造的开源音乐生成模型。 它拥有3.5B参数量,支持快速高质量生成、强可控性和易于拓展的特点。 最厉害的是,它可以生成多种语言的歌曲,包括但不限于中文、英文、日文等19种语言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值