hdoj-【2824 The Euler function】

本文介绍了一个计算特定区间内所有整数欧拉函数之和的算法。通过预处理方式,优化了计算过程,使得在给定的限制条件下可以快速求解(a)到(b)间所有整数的欧拉函数总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Euler function

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5923    Accepted Submission(s): 2501


Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
 

Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
 

Output
Output the result of (a)+ (a+1)+....+ (b)
 

Sample Input
3 100
 

Sample Output
3042
#include<cstdio>
#include<cstring>
typedef long long LL;
LL num[3100000];
void Init()
{
	memset(num,0,sizeof(num)); 
	LL n,j;
	num[1]=1; 
	for(n=2;n<3000010;++n)
	{
		if(!num[n])
		{
			for(j=n;j<3000010;j+=n)
			{
				if(!num[j])
					num[j]=j;
				num[j]=num[j]*(n-1)/n; 
			} 
		}
	} 
} 
int main()
{
	Init();
	LL a,b;
	while(~scanf("%lld%lld",&a,&b))
	{
		LL sum=0;
		for(;a<=b;++a)
			 sum+=num[a];
		printf("%lld\n",sum); 
	} 
	return 0;
} 


 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值