keras中的深度可分离卷积 SeparableConv2D与DepthwiseConv2D

【时间】2019.03.15

【题目】keras中的深度可分离卷积 SeparableConv2D与DepthwiseConv2D

概述

keras中的深度可分离卷积有SeparableConv2D与c两种,

其中SeparableConv2D实现整个深度分离卷积过程,即深度方向的空间卷积 (分别作用于每个输入通道)+ 输出通道混合在一起的逐点卷积,

而DepthwiseConv2D仅仅实现前半部分的空间卷积 (分别作用于每个输入通道)。

下面是keras中文文档的内容。

一、SeparableConv2D

keras.layers.SeparableConv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer='glorot_uniform', pointwise_initializer='glorot_uniform', bias_initializer='zeros', depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None)

深度方向的可分离 2D 卷积。

可分离的卷积的操作包括,首先执行深度方向的空间卷积 (分别作用于每个输入通道),紧接一个将所得输出通道 混合在一起的逐点卷积。depth_multiplier 参数控 制深度步骤中每个输入通道生成多少个输出通道。

直观地说,可分离的卷积可以理解为一种将卷积核分解成 两个较小的卷积核的方法,或者作为 Inception 块的 一个极端版本。

参数

  • filters: 整数,输出空间的维度 (即卷积中滤波器的输出数量)。
  • kernel_size: 一个整数,或者 2 个整数表示的元组或列表, 指明 2D 卷积窗口的高度和宽度。 可以是一个整数,为所有空间维度指定相同的值。
  • strides: 一个整数,或者 2 个整数表示的元组或列表, 指明卷积沿高度和宽度方向的步长。 可以是一个整数,为所有空间维度指定相同的值。 指定任何 stride 值 != 1 与指定 dilation_rate值 != 1 两者不兼容。
  • padding"valid" 或 "same" (大小写敏感)。
  • data_format
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值