方式一
package demo01
import java.sql.{Connection, DriverManager, PreparedStatement}
import java.text.SimpleDateFormat
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord}
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
object demo02 {
val driver = "com.mysql.jdbc.Driver"
val url = "jdbc:mysql://192.168.100.201/rng_comment"
val username = "root"
val password = "123456"
/**
* 1.5.1、查询出微博会员等级为5的用户,并把这些数据写入到mysql数据库中的vip_rank表中
* 1.5.2、查询出评论赞的个数在10个以上的数据,并写入到mysql数据库中的like_status表中
* 1.5.3、分别计算出2018/10/20 ,2018/10/21,2018/10/22,2018/10/23这四天每一天的评论数是多少,并写入到mysql数据库中的count_conmment表中
*/
def main(args: Array[String]): Unit = {
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("hw3")
val ssc = new StreamingContext(sparkConf, Seconds(3))
ssc.sparkContext.setLogLevel("WARN")
// 3.设置Kafka参数
val kafkaParams: Map[String, Object] = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "node01:9092,node02:9092,node03:9092",
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> classOf[StringDeserializer],
ConsumerConfig.GROUP_ID_CONFIG -> "SparkKafka77777",
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG -> "earliest",
//false表示关闭自动提交.由spark帮你提交到Checkpoint或程序员手动维护
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG -> (false: java.lang.Boolean)
)
// 4.设置Topic
var topics = Array("rng_comment")
val recordDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](ssc,