IROS‘25冠军方案:X-VLA重磅开源,全面刷新机器人SOTA!

点击下方卡片,关注“具身智能之心”公众号

作者丨JinLiang Zheng

编辑丨具身智能之心

本文只做学术分享,如有侵权,联系删文


>>点击进入→具身智能之心技术交流群

更多干货,欢迎加入国内首个具身智能全栈学习社区具身智能之心知识星球(戳我)这里包含所有你想要的。

清华大学智能产业研究院(AIR)与上海人工智能实验室联合发布全新通用跨本体具身基座模型:X-VLA。X-VLA是首个实现120min无辅助自主叠衣任务的全开源模型(公开数据、代码与参数),以仅0.9B的参数量在五大权威仿真基准上全面刷新性能纪录,同时,基于X-VLA的解决方案在IROS-AGIBOT World Challenge上大放异彩,夺得冠军。总体而言,X-VLA为具身智能领域提供了一个性能强劲、完全开源的新基线与技术范式。

  • 项目主页:https://thu-air-dream.github.io/X-VLA/

  • 代码:https://github.com/2toinf/X-VLA.git

  • 作者:Jinliang Zheng*, Jianxiong Li*, Zhihao Wang, Dongxiu Liu, Xirui Kang, Yuchun Feng, Yinan Zheng, Jiayin Zou, Yilun Chen, Jia Zeng, Ya-Qin Zhang, Jiangmiao Pang, Jingjing Liu, Tai Wang, Xianyuan Zhan

核心亮点

  • 性能突破:率先实现超长时序灵巧操作任务(如自主叠衣)的全流程开源,攻克长期复杂自主作业难题。

  • 极致高效:仅0.9B超轻量参数,即在五大仿真基准上实现SOTA性能,达成卓越的效费比。

  • 创新技术:打破大规模异构数据训练难题,通过Soft-Prompt与定制化训练范式,构建出高效通用的跨本体基座模型。

  • 开源开放:完整公开模型参数、代码与训练数据,助力具身智能社区复现与创新。

IROS-2025 AGIBOT World Challenge

AGIBOT World Challenge 由智元机器人与 OpenDriveLab 联合主办,吸引了来自 全球五大洲、23 个国家/地区的 431 支顶尖战队参与。全球 11 支最具竞争力的队伍通过了线上赛的筛选,参加了 IROS 杭州举办的 Manipulation 现场比赛,围绕抓取、折叠、烹饪、倒水等六大真实物理任务展开激烈角逐。

X-VLA 团队基于自主提出的 X-VLA 方法参赛,在多任务、多场景的真实物理操作中展现出卓越的泛化能力与鲁棒性,最终脱颖而出,荣获 全球第一名

核心方法

1. 高效模型设计

  • 面向本体泛化的Soft-Prompt机制:为克服不同机器人平台在自由度、相机观测视角等本体参数上的差异,本研究引入了可学习的Soft-Prompt。该机制动态地将具身本体的硬件配置信息编码为一种连续表征,使模型在预训练中能够解耦任务策略与具体执行器,从而显著增强模型对异构机器人平台的适应能力,并提升混合数据训练的稳定性与效率。

  • 基于功能分工的多模态编码策略:针对机器人任务中多源视觉输入的异质性,我们提出了分治编码方案。任务相关的主视角图像由高性能视觉-语言模型编码,以提取高层语义特征;而主要提供低层次空间反馈的辅助视角,则通过轻量化的网络进行局部特征提取。该策略在保证信息完整性的前提下,优化了计算资源的分配,提升了模型的信息处理通量。

  • 基于flow-macthing的生成式动作解码器:模型主干采用标准Transformer架构,以确保良好的扩展性与通用性。动作生成模块摒弃了传统的确定性输出策略,转而采用先进的flow-matching,以概率生成的方式建模机器人动作序列。该方法显著增强了动作轨迹的平滑性与对不确定环境的鲁棒性,为长时序任务的成功执行奠定了坚实基础。

2. 大规模高质量异构数据预训练

  • 平衡化数据采样:定制数据采样策略,确保异构数据集的均衡训练,避免模型偏斜。

  • 多模态数据清洗与时空对齐流水线:我们对原始机器人操作数据实施了严格预处理,包括:将不同空间下的动作数据统一映射至标准任务空间;对高频率采集的数据进行时序层面的对齐与重采样。此流程极大提升了状态-动作序列在时间上的一致性逻辑与整体质量。

  • 以语义-动作对齐为导向的数据遴选标准:我们确立了严格的数据质量门槛,核心是筛选视觉帧清晰、语言指令描述精准且与后续动作序列高度关联的数据样本。此举从源头上确保了模型学习到的是有明确因果关系的“行为知识”,而非浅层的虚假关联。

3. 定制后训练流程与技巧

  • 分层分组的自适应学习率调整:鉴于模型中不同组件(如预训练冻结的VLM、新引入的Soft-Prompt、主干Transformer等)的参数规模与收敛特性各异,我们为其施加了分组别、差异化的学习率调度策略。该设计既保护了预训练获得的基础知识,又允许关键适配层快速调整,从而在保证训练稳定性的同时,大幅优化了收敛效率。

  • 面向异构模块的渐进式 warm-up 策略:对于模型中新引入的可学习参数(如Soft-Prompt),我们在训练初始阶段采用线性递增的学习率热身机制,使其参数空间得以平稳初始化,再逐步融入全局优化过程。该策略有效避免了训练初期因梯度剧变导致的不稳定性,尤其适用于异构模块的协同训练。

实验结果

高效预训练:可扩展的架构优势

可扩展的架构优势X-VLA 的预训练缩放定律(Scaling Laws)曲线呈现出优异的线性增长趋势。这表明,随着模型参数以及训练数据规模的同步扩大,其在测试集的开环测试性能呈现稳定、可预测的提升。这一现象验证了所提出的 Soft-Prompt 机制与简洁Transformer架构的强大可扩展性,为构建更大规模的具身智能基座模型奠定了坚实基础。

高效后训练:数据与算法的协同优化

得益于高质量的预训练基座,X-VLA 在后训练(微调)阶段展现出极高的数据效率与稳定性。针对不同的下游任务(如自主叠衣),只需使用中小规模的场景专属数据进行微调,模型便能快速适应并达到SOTA性能。这源于预训练阶段学习到的通用视觉-语言-动作表征,以及后训练中采用的定制化学习率策略与慢启动机制,它们共同确保了知识从通用域到特定任务的高效、稳定迁移。

  • 仿真基准测试结果

在包括LIBERO、SIMPLER等在内的权威仿真环境中,X-VLA均取得了SOTA性能,显著优于现有同类模型。

  • 实机实验测试结果

在真实的机器人平台上,X-VLA在大量简单抓取和桌面操作任务中展现了强大性能,并成功完成了无限时长的自主叠衣任务,展示了其应对复杂长程任务的卓越能力。

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值