出现断层了?ICCV2025的自动驾驶方向演变...

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

ICCV的放榜啦,自动驾驶之心团队为大家梳理了自动驾驶相关方向的中稿文章,后续会持续更新,并在自动驾驶之心知识星球内部第一时间分享!欢迎加入我们~

多模态大模型 & VLA

  • 标题:ORION: A Holistic End-to-End Autonomous Driving Framework by Vision-Language Instructed Action Generation

  • 链接:https://arxiv.org/abs/2503.19755

  • 主页:https://xiaomi-mlab.github.io/Orion/

  • 单位:华科、小米

  • 标题:All-in-One Large Multimodal Model for Autonomous Driving

  • 链接:https://arxiv.org/abs/2412.07689

  • 主页:https://zhijian11.github.io/DriveMM/

  • 单位:中山&美团

  • 标题:MCAM: Multimodal Causal Analysis Model for Ego-Vehicle-Level Driving Video Understanding

  • 链接:https://arxiv.org/abs/2507.06072

  • 代码:https://github.com/SixCorePeach/MCAM

  • 单位:重庆大学

  • 标题:AdaDrive: Self-Adaptive Slow-Fast System for Language-Grounded Autonomous Driving\

  • 主页:https://github.com/ReaFly/AdaDrive

  • 标题:VLDrive: Vision-Augmented Lightweight MLLMs for Efficient Language-grounded Autonomous Driving

  • 主页:https://github.com/ReaFly/VLDrive

  • 标题:ETA: Efficiency through Thinking Ahead, A Dual Approach to Self-Driving with Large Models

  • 链接:https://arxiv.org/abs/2506.07725

  • 主页:https://github.com/OpenDriveLab/ETA

  • 单位:科奇大学、港大、OpenDriveLab

仿真 & 重建

  • 标题:InvRGB+L: Inverse Rendering of Complex Scenes with Unified Color and LiDAR Reflectance Modeling

  • 链接:https://arxiv.org/abs/2507.17613

  • 单位:清华大学,伊利诺伊大学厄巴纳 - 香槟分校

  • 标题:AD-GS: Object-Aware B-Spline Gaussian Splatting for Self-Supervised Autonomous Driving

  • 链接:https://arxiv.org/abs/2507.12137

  • 主页:https://jiaweixu8.github.io/AD-GS-web/

  • 单位:南开大学,伊利诺伊大学厄巴纳 - 香槟分校

  • 标题:BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting

  • 链接:https://arxiv.org/abs/2506.22099

  • 主页:https://github.com/fudan-zvg/BezierGS

  • 单位:复旦大学,上海创新研究院

  • 标题:RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors

  • 链接:https://arxiv.org/abs/2506.22800

  • 主页:https://github.com/CN-ADLab/RGE-GS

  • 单位:清华大学,浙江大学,菜鸟网络

端到端 & 轨迹预测

  • 标题:Epona: Autoregressive Diffusion World Model for Autonomous Driving

  • 链接:https://arxiv.org/pdf/2506.24113

  • 主页:https://github.com/Kevin-thu/Epona

  • 单位:清华大学,地平线,北京大学

  • 标题:Foresight in Motion: Reinforcing Trajectory Prediction with Reward Heuristics

  • 链接:https://arxiv.org/abs/2507.12083

  • 单位:香港科技大学,滴滴,卓驭科技

世界模型

  • 标题:World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model

  • 链接:https://arxiv.org/abs/2507.00603

  • 主页:https://github.com/ucaszyp/World4Drive

  • 单位:中国科学院自动化研究所,理想,新加坡国立大学等

  • 标题:MagicDrive-V2: High-Resolution Long Video Generation for Autonomous Driving with Adaptive Control

  • 链接:https://arxiv.org/abs/2411.13807

  • 主页:https://github.com/flymin/MagicDrive-V2

  • 单位:香港中文大学,华为诺亚方舟实验室等

  • 标题:DiST-4D: Disentangled Spatiotemporal Diffusion with Metric Depth for 4D Driving Scene Generation

  • 链接:https://arxiv.org/pdf/2503.15208

  • 主页:https://github.com/royalmelon0505/dist4d

  • 单位:清华大学,旷视科技等

  • 标题:Driving View Synthesis on Free-form Trajectories with Generative Prior

  • 链接:https://arxiv.org/abs/2412.01717

  • 主页:https://github.com/fudan-zvg/DriveX

  • 单位:复旦大学,萨里大学

  • 标题:Stag-1: Towards Realistic 4D Driving Simulation with Video Generation Model

  • 链接:https://arxiv.org/abs/2412.05280

  • 主页:https://github.com/wzzheng/Stag

  • 单位:北京大学,清华大学,北京航空航天大学

  • 标题:HERMES: A Unified Self-Driving World Model for Simultaneous 3D Scene Understanding and Generation

  • 链接:https://arxiv.org/abs/2501.14729

  • 主页:https://github.com/LMD0311/HERMES

  • 单位:华中科技大学,香港大学等

  • 标题:InfiniCube: Unbounded and Controllable Dynamic 3D Driving Scene Generation with World-Guided Video Models

  • 链接:https://arxiv.org/abs/2412.03934

  • 主页:https://github.com/nv-tlabs/InfiniCube

  • 单位:NVIDIA,上海交通大学,多伦多大学

占用网络

  • 标题:From Binary to Semantic: Utilizing Large-Scale Binary Occupancy Data for 3D Semantic Occupancy Prediction

  • 链接:https://arxiv.org/abs/2507.13387

  • 主页:https://github.com/ToyotaInfoTech/b2s-occupancy

  • 单位:丰田汽车公司

  • 标题:Disentangling Instance and Scene Contexts for 3D Semantic Scene Completion

  • 链接:https://arxiv.org/abs/2507.08555

  • 主页:https://github.com/Enyu-Liu/DISC

  • 单位:华中科技大学

  • 标题:Feed-Forward SceneDINO for Unsupervised Semantic Scene Completion

  • 链接:https://arxiv.org/abs/2507.06230

  • 主页:https://visinf.github.io/scenedino

  • 单位:慕尼黑工业大学,牛津大学等

  • 标题:GaussRender: Learning 3D Occupancy with Gaussian Rendering

  • 链接:https://arxiv.org/abs/2502.05040

  • 主页:https://github.com/valeoai/GaussRender

  • 单位:Valeo AI,索邦大学

  • 标题:GaussianOcc: Fully Self-supervised and Efficient 3D Occupancy Estimation with Gaussian Splatting

  • 链接:https://arxiv.org/abs/2408.11447

  • 主页:https://ganwanshui.github.io/GaussianOcc/

  • 单位:东京大学,华南理工大学等

  • 标题:Language Driven Occupancy Prediction

  • 链接:https://arxiv.org/abs/2411.16072

  • 主页:https://github.com/pkqbajng/LOcc

  • 单位:浙江大学、菜鸟网络等

  • 标题:ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction

  • 链接:https://arxiv.org/abs/2411.07725

  • 主页:https://github.com/cdb342/ALOcc

  • 单位:澳门大学,阿卜杜拉国王科技大学

目标检测

  • 标题:Perspective-Invariant 3D Object Detection

  • 链接:https://arxiv.org/abs/2507.17665

  • 主页:https://pi3det.github.io

  • 单位:新加坡国立大学,复旦大学,中国科学院大学

  • 标题:SFUOD: Source-Free Unknown Object Detection

  • 链接:https://arxiv.org/abs/2507.17373

  • 主页:https://github.com/KU-VGI/SFUOD

  • 单位:韩国庆熙大学,韩国高丽大学

  • 标题:MambaFusion: Height-Fidelity Dense Global Fusion for Multi-modal 3D Object Detection

  • 链接:https://arxiv.org/abs/2507.04369

  • 主页:https://github.com/AutoLab-SAI-SJTU/MambaFusion

  • 单位:中国科学院自动化研究所、中国科学院大学、上海交通大学

  • 标题:Towards Accurate and Efficient 3D Object Detection for Autonomous Driving: A Mixture of Experts Computing System on Edge

  • 链接:https://arxiv.org/abs/2507.04123

  • 主页:https://github.com/LinshenLiu622/EMC2

  • 单位:约翰霍普金斯大学,杜克大学,香港科技大学

  • 标题:OcRFDet: Object-Centric Radiance Fields for Multi-View 3D Object Detection in Autonomous Driving

  • 链接:https://arxiv.org/abs/2506.23565

  • 主页:https://github.com/Mingqj/OcRFDet

  • 单位:南京理工大学

数据集

  • 标题:ROADWork Dataset: Learning to Recognize, Observe, Analyze and Drive Through Work Zones

  • 链接:https://arxiv.org/abs/2406.07661

  • 主页:https://www.cs.cmu.edu/~ILIM/roadwork_dataset/

  • 单位:卡内基梅隆大学

  • 标题:Where, What, Why: Towards Explainable Driver Attention Prediction

  • 链接:https://arxiv.org/abs/2506.23088

  • 主页:ttps://github.com/yuchen2199/Explainable-Driver-Attention-Prediction

  • 单位:中山大学,新加坡国立大学

  • 标题:Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning

  • 链接:https://arxiv.org/abs/2507.04790

  • 单位:韩国科学技术院,DGIST

  • 标题:ETA: Efficiency through Thinking Ahead, A Dual Approach to Self-Driving with Large Models

  • 链接:https://arxiv.org/abs/2506.07725

  • 主页:https://github.com/opendrivelab/ETA

  • 单位:科奇大学,香港大学(中国)等

  • 标题:Fine-Grained Evaluation of Large Vision-Language Models in Autonomous Driving

  • 链接:https://arxiv.org/pdf/2503.21505

  • 主页:https://github.com/Depth2World/VLADBench

  • 单位:中国科学技术大学,华为诺亚方舟实验室,加州大学伯克利分校

  • 标题:DATAD: Driver Attention in Takeover of Autonomous Driving

  • 主页:https://github.com/OOPartsfili/DATAD-driver-attention-in-takeover-of-autonomous-driving

其他

  • 标题:Dynamic-DINO: Fine-Grained Mixture of Experts Tuning for Real-time Open-Vocabulary Object Detection

  • 链接:https://arxiv.org/abs/2507.17436

  • 单位:浙江大学,中兴通讯

  • 标题:Mind the Gap: Aligning Vision Foundation Models to Image Feature Matching

  • 链接:https://arxiv.org/abs/2507.10318

  • 单位:西安交通大学

  • 标题:Beyond One Shot, Beyond One Perspective: Cross-View and Long-Horizon Distillation for Better LiDAR Representations

  • 链接:https://arxiv.org/abs/2507.05260

  • 主页:http://github.com/Xiangxu-0103/LiMA

  • 单位:新加坡国立大学&南京航空航天大学&浙大&南邮

  • 标题:Stronger, Steadier & Superior: Geometric Consistency in Depth VFM Forges Domain Generalized Semantic Segmentation

  • 链接:https://arxiv.org/abs/2504.12753

  • 主页:https://github.com/anonymouse-xzrptkvyqc/DepthForge

  • 单位:集美大学,中山大学,西安电子科技大学等

更多内容欢迎加入自动驾驶之心知识星球,前沿技术、行业动态、求职问答!自动驾驶之心知识星球,作为国内最大的自驾技术社区,一直在给行业和个人输送各类人才、产业学术信息。目前累积了国内外几乎所有主流自驾公司和大多数知名研究机构。如果您需要第一时间了解产业、求职和行业痛点,欢迎加入我们。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值