WACV 2023 | 用于激光雷达点云自监督预训练SOTA!

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

>>点击进入→自动驾驶之心【3D目标检测】技术交流群

编辑 | 自动驾驶之心

原标题:Masked Autoencoder for Self-Supervised Pre-training on Lidar Point Clouds
论文链接:https://arxiv.org/pdf/2207.00531.pdf
作者单位:Chalmers University of Technology Zenseact
代码链接:https://github.com/georghess/voxel-mae
会议:WACV 2023

753a506335f763bbde46a148cfcdb220.png

论文思路:

masked autoencoding已经成为文本、图像和最近的点云的Transformer模型的一个成功的预训练范例。原始的汽车数据集适合进行自监督的预训练,因为与3D目标检测(OD)等任务的标注相比,它们的收集成本通常较低。然而,针对点云的masked autoencoders的开发仅仅集中在合成和室内数据上。因此,现有的方法已经将它们的表示和模型定制为小而稠密的点云,具有均匀的点密度。在这项工作中,本文研究了在汽车设置中对点云进行的masked autoencoding,这些点云是稀疏的,并且在同一场景中,点云的密度在不同的物体之间可以有很大的变化。为此,本文提出了Voxel-MAE,这是一种为体素表示而设计的简单的masked autoencoding预训练方案。本文对基于Transformer三维目标检测器的主干进行了预训练,以重建masked体素并区分空体素和非空体素。本文的方法提高了具有挑战性的nuScenes数据集上1.75 mAP和1.05 NDS的3D OD性能。此外,本文表明,通过使用Voxel-MAE进行预训练,本文只需要40%的带注释数据就可以超过随机初始化的等效数据。

主要贡献:

本文提出了Voxel-MAE(一种在体素化的点云上部署MAE-style的自监督预训练的方法),并在大型汽车点云数据集nuScenes上对其进行了评估。本文的方法是第一个使用汽车点云Transformer主干的自监督预训练方案。

本文针对体素表示定制本文的方法,并使用一组独特的重建任务来捕捉体素化点云的特征。

本文证明了本文的方法数据高效,并且减少了对带注释数据的需求。通过预训练,当只使用40%的带注释的数据时,本文的性能优于全监督的数据。

此外,本文发现Voxel-MAE在mAP中将基于Transformer检测器的性能提高了1.75个百分点,在NDS中将其性能提高了1.05个百分点,与现有的自监督方法相比,其性能提高了2倍。

网络设计:

这项工作的目的是将MAE-style的预训练扩展到体素化的点云。核心思想仍然是使用编码器从对输入的部分观察中创建丰富的潜在表示,然后使用解码器重构原始输入,如图2所示。经过预训练后,编码器被用作3D目标检测器的主干。但是,由于图像和点云之间的基本差异,需要对Voxel-MAE的有效训练进行一些修改。

9a32f309e41f2e22ab37cdfb6cc9cbdb.png

图2:本文的Voxel-MAE方法。首先,用固定的体素大小对点云进行体素化。图中的体素大小已被夸大,以实现可视化的目的。在训练前,很大一部分(70%)的非空体素被随机mask掉了。然后,编码器只应用于可见体素,使用嵌入[46]的动态体素特征嵌入这些体素。masked非空体素和随机选择的空体素使用相同的可学习mask tokens嵌入。然后,解码器对mask tokens序列和编码的可见体素序列进行处理,以重构masked点云并区分空体素和非空体素。在预训练之后,丢弃解码器,并将编码器应用于unmasked点云。

0bdc3be9ca0a77f9d3ae964b309941e2.png

图1:MAE(左)将图像划分为固定大小的不重叠的patches。现有的masked点建模方法(中)通过使用最远点采样和k近邻创建固定数量的点云patches。本文的方法(右)使用非重叠体素和动态数量的点。

实验结果:

1f7dc839b1632978ed941d1fe036c7da.png 2b1fe4c865cd980550b076d4a90e3ebf.png a8ea6f6a19ce3cfd93f1ffde836b5ed0.png 522d3865bf1b7e818ae2c889de973c2f.png 4e0f1cfbd05c4fc76caffd0961d0835d.png 1f567233aa137b4346f8953da8878ea8.png

引用:

Hess G, Jaxing J, Svensson E, et al. Masked autoencoder for self-supervised pre-training on lidar point clouds[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2023: 350-359.

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,如果您希望分享到自动驾驶之心平台,欢迎联系我们!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)

31ade474181cce8fcf967433b4402bf6.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

28611f7203a237c42551a4aecefcc6f6.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

b09ff53f94f89e45c82dc646db3f7ea7.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

2eb77371dad32ff6dc5b43c58da93cf6.jpeg

【评估多目标跟踪方法】9个高度敏捷目标在编队中的轨迹和测量研究(Matlab代码实现)内容概要:本文围绕“评估多目标跟踪方法”,重点研究9个高度敏捷目标在编队飞行中的轨迹生成与测量过程,并提供完整的Matlab代码实现。文中详细模拟了目标的动态行为、运动约束及编队结构,通过仿真获取目标的状态信息与观测数据,用于验证和比较不同多目标跟踪算法的性能。研究内容涵盖轨迹建模、噪声处理、传感器测量模拟以及数据可视化等关键技术环节,旨在为雷达、无人机编队、自动驾驶等领域的多目标跟踪系统提供可复现的测试基准。; 适合人群:具备一定Matlab编程基础,从事控制工程、自动化、航空航天、智能交通或人工智能等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多目标跟踪算法(如卡尔曼滤波、粒子滤波、GM-CPHD等)的性能评估与对比实验;②作为无人机编队、空中交通监控等应用场景下的轨迹仿真与传感器数据分析的教学与研究平台;③支持对高度机动目标在复杂编队下的可观测性与跟踪精度进行深入分析。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注轨迹生成逻辑与测量模型构建部分,可通过修改目标数量、运动参数或噪声水平来拓展实验场景,进一步提升对多目标跟踪系统设计与评估的理解。
本软件实现了一种基于时域有限差分法结合时间反转算法的微波成像技术,旨在应用于乳腺癌的早期筛查。其核心流程分为三个主要步骤:数据采集、信号处理与三维可视化。 首先,用户需分别执行“WithTumor.m”与“WithoutTumor.m”两个脚本。这两个程序将在模拟生成的三维生物组织环境中进行电磁仿真,分别采集包含肿瘤模型与不包含肿瘤模型的场景下的原始场数据。所获取的数据将自动存储为“withtumor.mat”与“withouttumor.mat”两个数据文件。 随后,运行主算法脚本“TR.m”。该程序将加载上述两组数据,并实施时间反转算法。算法的具体过程是:提取两组仿真信号之间的差异成分,通过一组专门设计的数字滤波器对差异信号进行增强与净化处理,随后在数值模拟的同一组织环境中进行时间反向的电磁波传播计算。 在算法迭代计算过程中,系统会按预设的周期(每n次迭代)自动生成并显示三维模拟空间内特定二维切面的电场强度分布图。通过对比观察这些动态更新的二维场分布图像,用户有望直观地识别出由肿瘤组织引起的异常电磁散射特征,从而实现病灶的视觉定位。 关于软件的具体配置要求、参数设置方法以及更深入的技术细节,请参阅软件包内附的说明文档。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值