Tectonic SAM笔记
SAM(Smoothing And Mapping)是SLAM简化而提升效率的概念。SAM也是SFM(Structure From Motion)的关键技术。
Tectonic SAM,采用因子图模型,优化方法估计状态(地图与位姿参数),本文将submap类比于大陆板块(Tectonic),对submap内部节点改变不明显,submap之间可大幅度调整。
During the optimization, the global position of the submap may change dramatically,
but the positions of the nodes in the submap relative to the local coordinate frame do not change very much.
机器人位置与姿态和地图估计是最大后验估计,是非线性最小二乘估计,
∑ i = 1 M ∣ ∣ f i ( x i − 1 , u i ) − x i ∣ ∣ Λ i 2 + ∑ k = 1 K ∣ ∣ h k ( x i k , l j k ) − z k ∣ ∣ Σ k 2 (1) \sum_{i=1}^M||f_i(x_{i-1},u_i)-x_i||^2_{\Lambda_i}+\sum_{k=1}^K||h_k(x_{i_k},l_{j_k})-z_k||^2_{\Sigma_k} \tag{1} i=1