### Java 实现残缺棋盘问题
残缺棋盘问题可以通过分治算法来解决。该算法的核心思想是将棋盘划分为更小的部分,并通过递归的方式逐步填充这些部分,最终完成整个棋盘的覆盖[^1]。
以下是基于上述描述的一个完整的 Java 解决方案:
#### 定义全局变量和辅助函数
为了便于操作矩阵并记录已放置的位置,定义了一个 `board` 数组用于存储当前状态。同时引入一个计数器 `tile` 来标记不同的 L 型骨牌编号。
```java
public class DefectiveChessBoard {
private static int tile = 1; // 记录L型骨牌的数量
private static final char EMPTY = ' ';
private static final String TILE_FORMAT = "%03d"; // 骨牌编号格式化字符串
public static void solve(int[][] board, int size, int startX, int startY, int defectX, int defectY) {
if (size == 1) return;
int subSize = size / 2;
// 找到缺陷所在的象限
boolean[] quadrantHasDefect = new boolean[4];
for (int i = 0; i < 4; ++i) {
int centerX = startX + (subSize * ((i & 1) != 0 ? 1 : 0));
int centerY = startY + (subSize * ((i >= 2) ? 1 : 0));
if (defectX >= centerX && defectX < centerX + subSize &&
defectY >= centerY && defectY < centerY + subSize) {
quadrantHasDefect[i] = true;
}
}
// 放置新的L型骨牌
placeTile(board,
startX + subSize - 1, startY + subSize - 1, // 左上角
startX + subSize - 1, startY + subSize, // 右上角
startX + subSize, startY + subSize - 1, // 左下角
startX + subSize, startY + subSize); // 右下角
// 对四个子区域分别递归调用
for (int i = 0; i < 4; ++i) {
int newX = startX + (subSize * ((i & 1) != 0 ? 1 : 0));
int newY = startY + (subSize * ((i >= 2) ? 1 : 0));
if (!quadrantHasDefect[i]) {
int missingX = newX + (i % 2);
int missingY = newY + (i / 2);
solve(board, subSize, newX, newY, missingX, missingY);
} else {
solve(board, subSize, newX, newY, defectX, defectY);
}
}
}
private static void placeTile(int[][] board, int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4) {
int currentTile = tile++;
board[x1][y1] = currentTile;
board[x2][y2] = currentTile;
board[x3][y3] = currentTile;
board[x4][y4] = currentTile;
}
public static void main(String[] args) {
int n = 8; // 棋盘大小为 2^n x 2^n
int[][] board = new int[(1 << n)][(1 << n)];
for (int i = 0; i < board.length; ++i) Arrays.fill(board[i], -1);
int defectiveRow = 3, defectiveCol = 5; // 缺陷位置
board[defectiveRow][defectiveCol] = Integer.MIN_VALUE;
solve(board, board.length, 0, 0, defectiveRow, defectiveCol);
// 输出结果
for (int i = 0; i < board.length; ++i) {
for (int j = 0; j < board[0].length; ++j) {
System.out.printf("%4s", board[i][j]);
}
System.out.println();
}
}
}
```
此代码实现了对任意大小 $2^n \times 2^n$ 的棋盘进行划分,并利用分治策略解决了残缺棋盘问题。
---
### 数据结构与算法的重要性
正如引用所提到的数据结构和算法对于程序员而言至关重要[^2],本案例展示了如何运用分治的思想解决问题。这种方法不仅提高了效率,还增强了代码可读性和扩展性。
---