Nike likes playing cards and makes a problem of it.
Now give you n integers, ai(1≤i≤n)
We define two identical numbers (eg: 2,2) a Duizi,
and three consecutive positive integers (eg: 2,3,4) a Shunzi.
Now you want to use these integers to form Shunzi and Duizi as many as possible.
Let s be the total number of the Shunzi and the Duizi you formed.
Try to calculate max(s).
Each number can be used only once.
Now give you n integers, ai(1≤i≤n)
We define two identical numbers (eg: 2,2) a Duizi,
and three consecutive positive integers (eg: 2,3,4) a Shunzi.
Now you want to use these integers to form Shunzi and Duizi as many as possible.
Let s be the total number of the Shunzi and the Duizi you formed.
Try to calculate max(s).
Each number can be used only once.
For each test case, the first line contains one integer n(1≤n≤106).
Then the next line contains n space-separated integers ai (1≤ai≤n)
7 1 2 3 4 5 6 7 9 1 1 1 2 2 2 3 3 3 6 2 2 3 3 3 3 6 1 2 3 3 4 5
2
4
3
2
Case 1(1,2,3)(4,5,6) Case 2(1,2,3)(1,1)(2,2)(3,3) Case 3(2,2)(3,3)(3,3) Case 4(1,2,3)(3,4,5)
题意很明确就不说明了,
思路:这是一道简单贪心题,利用下标存储就行了,提前预处理一下前两个值,如果前两个数的个数大于2,直接合成一对,如果第三个数的个数大于2,要考虑前两个数,是否为1,因为要充分利用每个数,比如
1 1 1 2 2 2 3 3 3 利用下标形成的数组是:a[1] = 3 , a[2] = 3 , a[3] = 3;
第一次预处理后:a[1] = 1, a[2] = 1, a[3] = 3; +2
第二次处理后: a[1] = 0, a[2] = 0, a[3] = 2; +1
然后第三次处理:a[1] = 0, a[2] = 0, a[3] = 0; +1
正好是四次,一次这样贪心就行了。代码如下:
#include <stdio.h> #include <string.h> const int maxn = 1000006; int a[maxn]; int t[maxn]; int main() { int n , sum , mx,mn; while(~scanf("%d",&n)) { sum = 0;mx = 0; mn = 9999999; memset(t, 0, sizeof(t)); for(int i = 0; i < n; i++) { scanf("%d",&a[i]); t[a[i]]++; mn = mn>a[i]?a[i]:mn; mx = mx<a[i]?a[i]:mx; } if(t[mn] >= 2) { sum += t[mn]/2; t[mn] %= 2; } if(t[mn+1] >= 2) { sum += t[mn+1]/2; t[mn+1] %= 2; } for(int i = mn+2; i <= mx; i++) { if(t[i] >= 2) { if(t[i-2] == 1 && t[i-1] == 1) { sum++; t[i]--; t[i-1]--; t[i-2]--; i--; } else { sum += t[i]/2; t[i] %= 2; } } else if(t[i] == 1){ if(t[i-2] == 1 && t[i-1] == 1) { sum++; t[i]--; t[i-1]--; t[i-2]--; } } } printf("%d\n",sum); } return 0; }