题面:
有一个初始为空的序列,在序列末尾随机添加1或2,有p的概率添加1,1 - p的概率添加2,如果序列末尾有连着的两个相同的数k,那么他们会合并成k + 1,这个合并只要可行,可以一直持续下去
序列有个长度限制n,当序列凑到n位且无法合并,添加操作就结束,问结束时所有权值的和的期望。
solution:
假设数字i出现的概率为p(i),则数字i + 1出现的期望可以粗略地估计为p(i)^2,那么,值大于50的数出现的概率就非常小了,对答案的贡献可以忽略不计
定义a[i][j]:在长度限制为i的情况下,最左端出现过数字j,最后让序列长度停止在i的概率
那么有a[i][j] = a[i][j - 1] * a[i - 1][j - 1],即先出现一次j - 1,再出现j - 1的概率
类似地,定义b[i][j],但加一个约束,序列初始时的第一个数字必须是2,有b[i][j] = b[i][j - 1] * a[i - 1][j - 1]
边界为a[i][1] = p,a[i][2] = b[i][2] = 1 - p
定义f[i][j]:构造一个长度为i的序列,构造结束时序列最左端为j,序列的和的期望
一般地,有f[i][j] = j + ∑(f[i - 1][k] * a[i - 1][k] * (1 - a[i - 2][k])) / ∑(a[i - 1][k] * (1 - a[i - 2][k])) (k = 1 ~ j - 1)
因为第一位确定为j时,第二位出现过的数字一定不能大于等于j,否则会和这个j合并
对于第三位,因为第二位的值已经确定,所以只需保证第三位不为k即可,乘上概率转移一下
特别地,当j = 1,
f[i][1] = 1 + ∑(f[i - 1][k] * b[i - 1][k] * (1 - a[i - 2][k])) / ∑(b[i - 1][k] * (1 - a[i - 2][k])) (k = 2 ~ 50)
最后统计答案为Ans = ∑f[n][i] * a[n][i] * (1 - a[n][i])
注意到转移超过五十次时,a,b数组的值就不在更新了
所以暴力前50次转移,后面的转移就可以用矩阵乘法了
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<bitset>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;
const int N = 51;
typedef long double DB;
const DB One = 1.000;
struct data{
DB a[N][N]; data(){memset(a,0,sizeof(a));}
data operator * (const data &b)
{
data c;
for (int k = 0; k < N; k++)
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
c.a[i][j] += a[i][k] * b.a[k][j];
return c;
}
};
int n;
DB Ans,p,q,a[N][N],b[N][N],f[N][N];
void Calc_50()
{
for (int i = 2; i < N; i++)
{
for (int j = 1; j < N; j++)
{
if (j == 1) a[i][j] += p;
if (j == 2) a[i][j] += q,b[i][j] += q;
a[i][j] += a[i][j - 1] * a[i - 1][j - 1];
b[i][j] += b[i][j - 1] * a[i - 1][j - 1];
}
DB s1,s2; s1 = s2 = 0;
for (int k = 2; k <= 50; k++)
{
s2 += b[i - 1][k] * (One - a[i - 2][k]);
s1 += f[i - 1][k] * b[i - 1][k] * (One - a[i - 2][k]);
}
f[i][1] = One + s1 / s2;
for (int j = 2; j <= 50; j++)
{
s1 = s2 = 0;
for (int k = 1; k < j; k++)
{
s2 += a[i - 1][k] * (One - a[i - 2][k]);
s1 += f[i - 1][k] * a[i - 1][k] * (One - a[i - 2][k]);
}
f[i][j] = j + s1 / s2;
}
}
}
data ksm(data x)
{
data ret;
for (int i = 0; i < N; i++) ret.a[i][i] = 1;
for (; n; n >>= 1)
{
if (n & 1) ret = ret * x;
x = x * x;
}
return ret;
}
void Calc()
{
data k; DB sum = 0;
f[50][0] = k.a[0][0] = 1;
for (int i = 2; i <= 50; i++)
sum += b[50][i] * (One - a[50][i]);
k.a[0][1] = 1;
for (int i = 2; i <= 50; i++)
k.a[i][1] = b[50][i] * (One - a[50][i]) / sum;
for (int i = 2; i <= 50; i++)
{
sum = 0; k.a[0][i] = (DB)(i);
for (int j = 1; j < i; j++) sum += a[50][j] * (One - a[50][j]);
for (int j = 1; j < i; j++) k.a[j][i] = a[50][j] * (One - a[50][j]) / sum;
}
k = ksm(k);
for (int i = 1; i <= 50; i++)
for (int j = 0; j <= 50; j++)
Ans += f[50][j] * k.a[j][i] * a[50][i] * (One - a[50][i]);
printf("%.12lf\n",(double)(Ans));
}
int main()
{
#ifdef DMC
freopen("DMC.txt","r",stdin);
#endif
cin >> n >> p; p /= 1E9; q = One - p;
a[1][1] = p; a[1][2] = b[1][2] = q;
f[1][1] = 1; f[1][2] = 2; Calc_50();
if (n <= 50)
{
for (int i = 1; i <= 50; i++)
Ans += f[n][i] * a[n][i] * (One - a[n - 1][i]);
printf("%.12lf\n",(double)(Ans)); return 0;
}
n -= 50; Calc();
return 0;
}