【学习笔记】昇思25天学习打卡(D09)初学10-使用静态图加速.ipynb

部署运行你感兴趣的模型镜像

使用静态图加速

背景介绍

AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。两种运行模式的详细介绍如下:

动态图模式

动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。

在MindSpore中,动态图模式又被称为PyNative模式。由于动态图的解释执行特性,在脚本开发和网络流程调试过程中,推荐使用动态图模式进行调试。
如需要手动控制框架采用PyNative模式,可以通过以下代码进行网络构建:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.PYNATIVE_MODE)  # 使用set_context进行动态图模式的配置

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

静态图模式

相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。有关静态图模式的运行原理,可以参考静态图语法支持

在MindSpore中,静态图模式又被称为Graph模式,在Graph模式下,基于图优化、计算图整图下沉等技术,编译器可以针对图进行全局的优化,获得较好的性能,因此比较适合网络固定且需要高性能的场景。

如需要手动控制框架采用静态图模式,可以通过以下代码进行网络构建:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.GRAPH_MODE)  # 使用set_context进行运行静态图模式的配置

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

静态图模式的使用场景

MindSpore编译器重点面向Tensor数据的计算以及其微分处理。因此使用MindSpore API以及基于Tensor对象的操作更适合使用静态图编译优化。其他操作虽然可以部分入图编译,但实际优化作用有限。另外,静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。

有关使用静态图来进行网络编译的示例,请参考网络构建

静态图模式开启方式

通常情况下,由于动态图的灵活性,我们会选择使用PyNative模式来进行自由的神经网络构建,以实现模型的创新和优化。但是当需要进行性能加速时,我们需要对神经网络部分或整体进行加速。MindSpore提供了两种切换为图模式的方式,分别是基于装饰器的开启方式以及基于全局context的开启方式。

基于装饰器的开启方式

MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。

在需要对Tensor的某些运算进行编译加速时,可以在其定义的函数上使用jit修饰器,在调用该函数时,该模块自动被编译为静态图。需要注意的是,jit装饰器只能用来修饰函数,无法对类进行修饰。jit的使用示例如下:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))

@ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
def run(x):
    model = Network()
    return model(x)

output = run(input)
print(output)

除使用修饰器外,也可使用函数变换方式调用jit方法,示例如下:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))

def run(x):
    model = Network()
    return model(x)

run_with_jit = ms.jit(run)  # 通过调用jit将函数转换为以静态图方式执行
output = run(input)
print(output)

当我们需要对神经网络的某部分进行加速时,可以直接在construct方法上使用jit修饰器,在调用实例化对象时,该模块自动被编译为静态图。示例如下:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    @ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
model = Network()
output = model(input)
print(output)

基于context的开启方式

context模式是一种全局的设置模式。代码示例如下:

import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.GRAPH_MODE)  # 使用set_context进行运行静态图模式的配置

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)

静态图的语法约束

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。因此,编译器无法支持全量的Python语法。MindSpore的静态图编译器维护了Python常用语法子集,以支持神经网络的构建及训练。详情可参考静态图语法支持

JitConfig配置选项

在图模式下,可以通过使用JitConfig配置选项来一定程度的自定义编译流程,目前JitConfig支持的配置参数如下:

  • jit_level: 用于控制优化等级。
  • exec_mode: 用于控制模型执行方式。
  • jit_syntax_level: 设置静态图语法支持级别,详细介绍请见静态图语法支持

静态图高级编程技巧

使用静态图高级编程技巧可以有效地提高编译效率以及执行效率,并可以使程序运行的更加稳定。详情可参考静态图高级编程技巧

Reference
教程来自:
https://gitee.com/mindspore/docs/blob/r2.3.0rc2/tutorials/source_zh_cn/beginner/accelerate_with_static_graph.ipynb

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

pip install adbutils Looking in indexes: http://mirrors.aliyun.com/pypi/simple Collecting adbutils Using cached http://mirrors.aliyun.com/pypi/packages/9c/8d/52d0ec236ca354bf03f9ae9c2263ee95e989ba02fb749f105a6b938e4122/adbutils-2.10.2-py3-none-win_amd64.whl (3.3 MB) Collecting requests (from adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl (64 kB) Collecting deprecation<3.0,>=2.0.6 (from adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/02/c3/253a89ee03fc9b9682f1541728eb66db7db22148cd94f89ab22528cd1e1b/deprecation-2.1.0-py2.py3-none-any.whl (11 kB) Collecting retry2<1.0,>=0.9 (from adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/97/49/1cae6d9b932378cc75f902fa70648945b7ea7190cb0d09ff83b47de3e60a/retry2-0.9.5-py2.py3-none-any.whl (6.0 kB) Collecting Pillow (from adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/a9/d3/60c781c83a785d6afbd6a326ed4d759d141de43aa7365725cbcd65ce5e54/pillow-11.3.0-cp310-cp310-win_amd64.whl (7.0 MB) Collecting packaging (from deprecation<3.0,>=2.0.6->adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl (66 kB) Collecting decorator>=3.4.2 (from retry2<1.0,>=0.9->adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl (9.2 kB) Collecting charset_normalizer<4,>=2 (from requests->adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/e2/c6/f05db471f81af1fa01839d44ae2a8bfeec8d2a8b4590f16c4e7393afd323/charset_normalizer-3.4.3-cp310-cp310-win_amd64.whl (107 kB) Collecting idna<4,>=2.5 (from requests->adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl (70 kB) Collecting urllib3<3,>=1.21.1 (from requests->adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl (129 kB) Collecting certifi>=2017.4.17 (from requests->adbutils) Using cached http://mirrors.aliyun.com/pypi/packages/e4/37/af0d2ef3967ac0d6113837b44a4f0bfe1328c2b9763bd5b1744520e5cfed/certifi-2025.10.5-py3-none-any.whl (163 kB) Installing collected packages: urllib3, Pillow, packaging, idna, decorator, charset_normalizer, certifi, retry2, requests, deprecation, adbutils ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. matplotlib 3.8.0 requires python-dateutil>=2.7, which is not installed. uiautomator2 3.2.9 requires lxml, which is not installed. uiautomator2 3.2.9 requires retry<1,>=0, which is not installed. selenium 4.5.0 requires urllib3[socks]~=1.26, but you have urllib3 2.5.0 which is incompatible. Successfully installed Pillow-11.3.0 adbutils-2.10.2 certifi-2025.10.5 charset_normalizer-3.4.3 decorator-5.2.1 deprecation-2.1.0 idna-3.10 packaging-25.0 requests-2.32.5 retry2-0.9.5 urllib3-2.5.0 WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\adbutils already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\adbutils-2.10.2.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\certifi already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\certifi-2025.10.5.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\charset_normalizer already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\decorator-5.2.1.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\decorator.py already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\deprecation-2.1.0.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\deprecation.py already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\idna already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\idna-3.10.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\packaging already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\packaging-25.0.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\PIL already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\pillow-11.3.0.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\requests already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\requests-2.32.5.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\retry already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\retry2-0.9.5.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\urllib3 already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\urllib3-2.5.0.dist-info already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\__pycache__ already exists. Specify --upgrade to force replacement. WARNING: Target directory D:\BTMF\Python37\Lib\site-packages\bin already exists. Specify --upgrade to force replacement. [notice] A new release of pip is available: 23.3.1 -> 25.2 [notice] To update, run: python.exe -m pip install --upgrade pip PS D:\Hy_autotests\Hy_autotest> pip show uiautomator2 Name: uiautomator2 Version: 3.2.9 Summary: uiautomator for android device Home-page: https://github.com/openatx/uiautomator2 Author: codeskyblue Author-email: codeskyblue@gmail.com License: MIT Location: d:\python\auto_deploy_hytest\python\python310\lib\site-packages Requires: adbutils, lxml, Pillow, requests, retry Required-by: PS D:\Hy_autotests\Hy_autotest>
最新发布
10-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值