机器学习基础模型选择

最近邻
适用于小型数据集,是很好的基准模型,很容易解释。
线性模型
非常可靠的首选算法,适用于非常大的数据集,也适用于高维数据。
朴素贝叶斯
只适用于分类问题。比线性模型速度还快,适用于非常大的数据集和高维数据。精度通
常要低于线性模型。
决策树
速度很快,不需要数据缩放,可以可视化,很容易解释。
随机森林
几乎总是比单棵决策树的表现要好,鲁棒性很好,非常强大。不需要数据缩放。不适用
于高维稀疏数据。
梯度提升决策树
精度通常比随机森林略高。与随机森林相比,训练速度更慢,但预测速度更快,需要的
内存也更少。比随机森林需要更多的参数调节。
支持向量机
对于特征含义相似的中等大小的数据集很强大。需要数据缩放,对参数敏感。
神经网络
可以构建非常复杂的模型,特别是对于大型数据集而言。对数据缩放敏感,对参数选取
敏感。大型网络需要很长的训练时间。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值