一、什么是注意力
注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。
- 不同CNN层的特征图:不同通道的特征图
- 什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。
transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。我们现在说的很多模块,比如通道注意力、空间注意力、通道注意力等等,都是基于自注意力机制的。
从数学角度看,注意力机制是对输入特征进行加权求和,输出=∑(输入特征×注意力权重),其中注意力权重是学习到的。所以他和卷积很像,因为卷积也是一种加权求和。但是卷积是 “固定权重” 的特征提取(如 3x3 卷积核)--训练完了就结束了,注意力是 “动态权重” 的特征提取(权重随输入数据变化)---输入数据不同权重不同。
问:为什么需要多种注意力模块?
答:因为不同场景下的关键信息分布不同。例如,识别鸟类和飞机时,需关注 “羽毛纹理”“金属光泽” 等特定通道的特征,通道注意力可强化关键通道;而物体位置不确定时(如猫出现在图像不同位置),空间注意力能聚焦物体所在区域,忽略背景。复杂场景中,可能需要同时关注通道和空间(如混合注意力模块 CBAM),或处理长距离依赖(如全局注意力模块 Non-local)。
问:为什么不设计一个‘万能’注意力模块?
答:主要受效率和灵活性限制。专用模块针对特定需求优化计算,成本更低(如通道注意力仅需处理通道维度,无需全局位置计算);不同任务的核心需求差异大(如医学图像侧重空间定位,自然语言处理侧重语义长距离依赖),通用模块可能冗余或低效。每个模块新增的权重会增加模型参数量,若训练数据不足或优化不当,可能引发过拟合。因此实际应用中需结合轻量化设计(如减少全连接层参数)、正则化(如 Dropout)或结构约束(如共享注意力权重)来平衡性能与复杂度。
通道注意力(Channel Attention)属于注意力机制(Attention Mechanism)的变体,而非自注意力(Self-Attention)的直接变体。可以理解为注意力是一个动物园算法,里面很多个物种,自注意力只是一个分支,因为开创了transformer所以备受瞩目。
常见注意力模块的归类如下:
| 注意力模块 | 所属类别 | 核心功能 |
|---|---|---|
| 自注意力(Self-Attention) | 自注意力变体 | 建模同一输入内部元素的依赖(如序列位置、图像块) |
| 通道注意力(Channel Attention) | 普通注意力变体(全局上下文) | 建模特征图通道间的重要性,通过全局池化压缩空间信息 |
| 空间注意力(Spatial Attention) | 普通注意力变体(全局上下文) | 建模特征图空间位置的重要性,关注 “哪里” 更重要 |
| 多头注意力(Multi-Head Attention) | 自注意力 / 普通注意力的增强版 | 将 query/key/value 投影到多个子空间,捕捉多维度依赖 |
| 编码器 - 解码器注意力(Encoder-Decoder Attention) | 普通注意力变体 | 建模编码器输出与解码器输入的跨模态交互(如机器翻译中句子与译文的对齐) |
二、特征图的提取
2.1 简单的CNN训练
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([
# 随机裁剪图像,从原图中随机截取32x32大小的区域
transforms.RandomCrop(32, padding=4),
# 随机水平翻转图像(概率0.5)
transforms.RandomHorizontalFlip(),
# 随机颜色抖动:亮度、对比度、饱和度和色调随机变化
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
# 随机旋转图像(最大角度15度)
transforms.RandomRotation(15),
# 将PIL图像或numpy数组转换为张量
transforms.ToTensor(),
# 标准化处理:每个通道的均值和标准差,使数据分布更合理
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
root='./data',
train=True,
download=True,
transform=train_transform # 使用增强后的预处理
)
test_dataset = datasets.CIFAR10(
root='./data',
train=False,
transform=test_transform # 测试集不使用增强
)
# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):
de

最低0.47元/天 解锁文章
2288

被折叠的 条评论
为什么被折叠?



