一、题目描述

二、算法分析说明与代码编写指导
并查集模板题。


三、AC 代码
#include<cstdio>
#include<algorithm>
#include<set>
#pragma warning(disable:4996)
using namespace std;
template<size_t n> class union_find {
private:
unsigned root[n]; int rank[n];
public:
union_find<n>() { init(); }
union_find<n>(const bool& WannaInit) { if (WannaInit == true)init(); }
void init() {
fill(rank, rank + n, 1); for (unsigned i = 0; i < n; ++i)root[i] = i;
}
void init(const size_t& _n) {
fill(rank, rank + _n, 1); for (unsigned i = 0; i < _n; ++i)root[i] = i;
}
unsigned find_root(const unsigned& v) {
unsigned r = v, t = v, u;
if (t == root[v])return v;
while (r != root[r]) { r = root[r]; }
while (t != r) { u = root[t]; root[t] = r; t = u; }
return r;
}
void path_compress() { for (unsigned i = 0; i < n; ++i)find_root(i); }
void merge(unsigned u, unsigned v) {
unsigned fu = find_root(u), fv = find_root(v); int d = rank[fu] - rank[fv];
if (d < 0) { swap(fu, fv); swap(u, v); }
else if (d == 0)++rank[fu];
root[fv] = fu;
}
void merge_no_path_compression(const unsigned& u, const unsigned& v) {
root[v] = u; if (rank[u] == rank[v])++rank[u];
}
void merge_directly(const unsigned& u, const unsigned& v) { root[v] = u; }
unsigned _rank(const unsigned& v) { return rank[find_root(v)]; }
size_t size() { return n; }
};
unsigned t, n, m, x, y; union_find<1001> u(false); set<unsigned> s;
int main() {
scanf("%u", &t); ++t;
while (--t) {
scanf("%u%u", &n, &m); ++m; u.init(n + 1); s.clear();
while (--m) { scanf("%u%u", &x, &y); u.merge(x, y); }
for (unsigned i = 1; i <= n; ++i)s.emplace(u.find_root(i));
printf("%llu\n", s.size());
}
return 0;
}
本文深入解析并查集数据结构的实现原理与应用场景,提供详细的代码示例,包括初始化、查找根节点、路径压缩及集合合并等关键操作。通过实战案例,展示并查集在解决连通性问题中的高效运用。
483

被折叠的 条评论
为什么被折叠?



