Binary Classification:
- Logistic Regression: y^=σ(wTx+b)\hat{y}=\sigma{(w^T x+b)}y^=σ(wTx+b) using sigmoid function σ=11+e−z\sigma = \frac{1}{1+e^{-z}}σ=1+e−z1.
- 【
torch.sigmoid(x)】Sigmoid(x)=11+e−x\text{Sigmoid}(x)=\frac{1}{1+e^{-x}}Sigmoid(x)=1+e−x1

- 【
- Logistic Regression loss function:
L(y^,y)=12(y^−y)2\mathcal{L}(\hat{y},y) = \frac{1}{2} (\hat{y}-y)^2L(y^,y)=21(y^−y)2 × non-convex
L(y^,y)=−(ylogy^+(1−y)log(1−y^))\mathcal{L}(\hat{y},y) = -(y \log \hat{y} + (1-y) \log (1-\hat{y} ))L(y^,y)=−(ylogy^+(1−y)log(1−y^)) √ convex - Logistic Regression cost function:
J(w,b)=1m∑i=1mL(y^(i),y(i))=−1m∑i=1m(y(i)logy^(i)+(1−y(i))log(1−y^(i)))J(w, b) = \frac{1}{m} \sum^m_{i=1} \mathcal{L}(\hat{y}^{(i)},y^{(i)}) = - \frac{1}{m} \sum^m_{i=1} (y^{(i)} \log \hat{y}^{(i)} + (1-y^{(i)}) \log (1-\hat{y}^{(i)} ))J(w,b)=m1∑i=1mL(y^(i),y(i))=−m1∑i=1m(y(i)logy^(i)+(1−y(i))log(1−y^(i)))
1401

被折叠的 条评论
为什么被折叠?



