逻辑回归原理很简单,这里不再赘述,我使用tensorflow的思路和前面一样,还是利用Supervisor模块(这个确实好用啊),argparser和logging日志模块。实现代码如下:
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import tensorflow as tf
import logging
import argparse
import os
import matplotlib.pyplot as plt
import numpy as np
logging.basicConfig(format="[%(process)d] %(levelname)s %(filename)s:%(lineno)s | %(message)s")
log = logging.getLogger('train')
log.setLevel(logging.INFO)
data = np.mat([[0.697,0.460,1],
[0.774,0.376,1],
[0.634,0.264,1],
[0.608,0.318,1],
[0.556,0.215,1],
[0.403,0.237,1],
[0.481,0.149,1],
[0.437,0.211,1],
[