[CodeForces 1391E] Pairs of Pairs(结论) | 错题本

本文分析了CodeForces1391E题目“PairsofPairs”,提出了解决方案:当DFS树高度达到特定阈值时,输出路径;否则,采用配对策略。通过理论分析和代码实现,确保了选取点数的合法性。

文章目录

题目

[CodeForces 1391E] Pairs of Pairs

分析

两个 NP 问题拼起来就变成了一道蓝题?
结论:

  • 若 DFS 树高不小于 ⌈ n 2 ⌉ \left\lceil\frac{n}{2}\right\rceil 2n,输出 PATH 以及根开始最长的链;
  • 否则输出 PAIRING,对每层挨着两两匹配(可能会单一个出来不选)即可。

情况一显然合法(尽管所有直径不小于 ⌈ n 2 ⌉ \left\lceil\frac{n}{2}\right\rceil 2n 的 DFS 树都可以输出 PATH,但为了保证情况二合法,我们只对树高不小于 ⌈ n 2 ⌉ \left\lceil\frac{n}{2}\right\rceil 2n 的 DFS 树输出 PATH)。

情况二:

  • 先说明这样选的点数至少是 ⌈ n 2 ⌉ \left\lceil\frac{n}{2}\right\rceil 2n
    显然一层最多一个点不被选上,又因为树高小于 ⌈ n 2 ⌉ \left\lceil\frac{n}{2}\right\rceil 2n,所以至少能选出 ⌈ n 2 ⌉ \left\lceil\frac{n}{2}\right\rceil 2n 个点。

  • 然后说明选出的点合法:
    首先要明确的是一个无向图的 DFS 树,深度相同的点在原图上不会有连边。

    若深度相同的点在原图上有连边:假设这两个点为 u , v u, v u,v,不妨设 u u u 的 DFN 小于 v v v 的 DFN,那么在 u u u 处往下 DFS 时必然会访问到邻接点 v v v,那么 v v v 的深度大于 u u u,与假设矛盾。

    然后考虑层间的选择:不妨设选了 a , b , c , d a, b, c, d a,b,c,d 四个点,其中 a , b a, b a,b 深度相同、 c , d c, d c,d 深度相同,且 a , b a, b a,b 深度小于 c , d c, d c,d,那么可能有边的只能是 ( a , c ) , ( a , d ) , ( b , c ) , ( b , d ) (a, c), (a, d), (b, c), (b, d) (a,c),(a,d),(b,c),(b,d),画图可以发现,这四条边中最多有两条,否则 a , b a, b a,b 不可能是同层节点(即在该导出子图里面 a , b a, b a,b 不能联通)。

代码

#include <bits/stdc++.h>

const int MAXN = 500000;
const int MAXM = 1000000;

int N, M;
int Dep[MAXN + 5];
int Len[MAXN + 5], Son[MAXN + 5];
std::vector<int> G[MAXN + 5], D[MAXN + 5];

void Dfs(int u, int d) {
    Dep[u] = d;
    D[d].push_back(u);
    for (int i = 0; i < (int)G[u].size(); i++) {
        int v = G[u][i];
        if (!Dep[v]) {
            Dfs(v, d + 1);
            if (Len[v] > Len[u])
                Son[u] = v, Len[u] = Len[v];
        }
    }
    Len[u]++;
}

int main() {
    int T; scanf("%d", &T);
    while (T--) {
        scanf("%d%d", &N, &M);
        for (int i = 1; i <= M; i++) {
            int u, v; scanf("%d%d", &u, &v);
            G[u].push_back(v), G[v].push_back(u);
        }
        Dfs(1, 1);
        std::vector<int> Ans;
        if (Len[1] >= (N + 1) / 2) {
            puts("PATH");
            for (int u = 1; u; u = Son[u])
                Ans.push_back(u);
            printf("%d\n", (int)Ans.size());
            for (int i = 0; i < (int)Ans.size(); i++)
                printf("%d ", Ans[i]);
            puts("");
        }
        else {
            puts("PAIRING");
            for (int i = 1; i <= Len[1]; i++)
                for (int j = 0; j + 1 < (int)D[i].size(); j += 2)
                    Ans.push_back(D[i][j]), Ans.push_back(D[i][j + 1]);
            printf("%d\n", (int)Ans.size() / 2);
            for (int i = 0; i < (int)Ans.size(); i += 2)
                printf("%d %d\n", Ans[i], Ans[i + 1]);
        }
        for (int i = 1; i <= N; i++)
            Dep[i] = Len[i] = Son[i] = 0, G[i].clear(), D[i].clear();
    }
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值