1005 - Rooks (组合数)

探讨了在n x n的棋盘上放置k个战车(rooks),使得任意两个战车都不处于互相攻击的位置的方法数量计算。通过组合数学的方法解决此问题,并给出了一种有效的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.lightoj.com/volume_showproblem.php?problem=1005

1005 - Rooks
Time Limit: 1 second(s)Memory Limit: 32 MB

A rook is a piece used in the game of chess which is played on a board of square grids. A rook can only move vertically or horizontally from its current position and two rooks attack each other if one is on the path of the other. In the following figure, the dark squares represent the reachable locations for rook R1 from its current position. The figure also shows that the rook R1 and R2 are in attacking positions where R1 and R3 are not. R2 and R3 are also in non-attacking positions.

Now, given two numbers n and k, your job is to determine the number of ways one can put k rooks on an n x n chessboard so that no two of them are in attacking positions.

Input

Input starts with an integer T (≤ 350), denoting the number of test cases.

Each case contains two integers n (1 ≤ n ≤ 30) and k (0 ≤ k ≤ n2).

Output

For each case, print the case number and total number of ways one can put the given number of rooks on a chessboard of the given size so that no two of them are in attacking positions. You may safely assume that this number will be less than 1017.

Sample Input

Output for Sample Input

8

1 1

2 1

3 1

4 1

4 2

4 3

4 4

4 5

Case 1: 1

Case 2: 4

Case 3: 9

Case 4: 16

Case 5: 72

Case 6: 96

Case 7: 24

Case 8: 0

这一题会溢出的,但是会过。代码是世界最优美的语言
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <string>
#define SI(T)int T;scanf("%d",&T)
using namespace std;
const int SIZE=1e4+10;
const int maxn=1<<30;
long long C[33][33];
long long init(int n,int k){
    C[0][0] = 1;
    for (int i = 1; i <= 30; ++i) {
        C[i][0] = C[i][i] = 1;
        C[i][1] = i;
        for (int j = 2; j < i; ++j) {
            C[i][j] = C[i - 1][j] + C[i - 1][j - 1];
        }
    }
}
int main()
{
    SI(T);
    int n,k;
    init(30,30);
    for(int cas=1;cas<=T;cas++){
        scanf("%d%d",&n,&k);
        if(k>n)printf("Case %d: 0\n",cas);
        else{
            long long ans=1;
            for(int i=1;i<=k;i++)
                ans*=i;
            printf("Case %d: %lld\n",cas,ans*C[n][k]*C[n][k]);
        }
    }
    return 0;
}



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值