LightOJ 1005 - Rooks (排列组合)

本文探讨了在给定的n*n棋盘上放置k个车类的组合方式,确保它们之间不会相互攻击的数学问题。通过计算组合数的平方并乘以k的排列数来得出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



1005 - Rooks

Time Limit: 1 second(s)

Memory Limit: 32 MB

A rook is a piece used in the game of chess which is played on a board of square grids. A rook can only move vertically or horizontally from its current position and two rooks attack each other if one is on the path of the other. In the following figure, the dark squares represent the reachable locations for rook R1 from its current position. The figure also shows that the rook R1 and R2 are in attacking positions where R1 and R3 are not. R2 and R3 are also in non-attacking positions.

Now, given two numbers n and k, your job is to determine the number of ways one can put k rooks on an n x n chessboard so that no two of them are in attacking positions.

Input

Input starts with an integer T (≤ 350), denoting the number of test cases.

Each case contains two integers n (1 ≤ n ≤ 30) and k (0 ≤ k ≤ n2).

Output

For each case, print the case number and total number of ways one can put the given number of rooks on a chessboard of the given size so that no two of them are in attacking positions. You may safely assume that this number will be less than 1017.

Sample Input

Output for Sample Input

8

1 1

2 1

3 1

4 1

4 2

4 3

4 4

4 5

Case 1: 1

Case 2: 4

Case 3: 9

Case 4: 16

Case 5: 72

Case 6: 96

Case 7: 24

Case 8: 0

 


题意:在棋盘中车可以上下或者左右攻击,给出一个n*n的棋盘和k个车,把它们放入棋盘中,确保它们之间不能相互攻击,问有几种放法。

题解:QAQ,看了大半天觉得和n皇后问题老像了,然后意淫dfs,搞了半天。原来是有规律的,总放法为在n中取k个点的组合个数的平方(因为是二维图形,不是线段),再乘k的阶乘(即k的排列个数)。


代码如下:

#include<cstdio>

long long C(int n,int k)//求组合结果 
{
	int i;
	long long x=1;
	if(k==0)
		return x;
	for(i=1;i<=k;++i)
		x=x*(n-i+1)/i;
	return x;
} 

int main()
{
	int t,n,k,cnt=1,i;
	long long sum;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&k);
		printf("Case %d: ",cnt++);
		sum=C(n,k);
		sum*=sum;
		for(i=1;i<=k;++i)//排列过程 
			sum*=i;
		printf("%lld\n",sum);
	}
	return sum;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值