Wormholes

本文探讨了如何利用SPFA算法解决具有负权重循环的路径问题,包括图中可能存在的重边和自环情况。通过实例POJ 3259 Wormholes,详细解释了解决方案和算法应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

负权回路判断,有重边有自环,万能的spfa解决

http://poj.org/problem?id=3259

Wormholes
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 39617 Accepted: 14559

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer,   F.   F  farm descriptions follow.  
Line 1 of each farm: Three space-separated integers respectively:   N,   M, and   W  
Lines 2.. M+1 of each farm: Three space-separated numbers ( S,   E,   T) that describe, respectively: a bidirectional path between   S  and   E  that requires   T  seconds to traverse. Two fields might be connected by more than one path.  
Lines   M+2.. M+ W+1 of each farm: Three space-separated numbers ( S,   E,   T) that describe, respectively: A one way path from   S  to   E  that also moves the traveler back   Tseconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time.  
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <queue>
#define Min(a,b) a>b?b:a;
#define Max(a,b) a>b?a:b;
using namespace std;
const int SIZE=5e2+10;
const int maxn=1<<30;
struct node{
    int v;int w;
    node(){}
    node(int vv,int ww):v(vv),w(ww){}
};
vector<vector<node> >G;
int cost[SIZE][SIZE];
int dis[SIZE];
bool spfa(int s,int n){
    int uptimes[SIZE];
    memset(uptimes,0,sizeof(uptimes));
    for(int i=1;i<=n;i++)
        dis[i]=maxn;
    dis[s]=0;
    queue<int>q;
    q.push(s);
    while(!q.empty()){
        int u=q.front();
        q.pop();
        for(int i=0;i<G[u].size();i++){
            int v=G[u][i].v;
            int w=G[u][i].w;
            if(w!=cost[u][v])continue;
            if(dis[v]<=dis[u]+w)continue;
            dis[v]=dis[u]+w;
            q.push(v);
            uptimes[v]++;
            if(uptimes[v]>=n)return true;
        }
    }
    return false;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        memset(cost,0,sizeof(cost));
        int n,m,x,u,v,w;
        scanf("%d%d%d",&n,&m,&x);
        G.clear();
        G.resize(n+10);
        for(int i=0;i<m;i++){
            scanf("%d%d%d",&u,&v,&w);
            if(u==v)continue;
            G[u].push_back(node(v,w));
            G[v].push_back(node(u,w));
            if(cost[u][v]){
                cost[u][v]=cost[v][u]=Min(cost[v][u],w);
            }
            else cost[u][v]=cost[v][u]=w;
        }
        for(int i=0;i<x;i++){
            scanf("%d%d%d",&u,&v,&w);
            G[u].push_back(node(v,-w));
            cost[u][v]=Min(cost[u][v],-w);
        }
        if(spfa(1,n))printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值