http://acm.hdu.edu.cn/showproblem.php?pid=1394
树状数组求逆序数,逆序数个数为出现过的比当前的数字大的元素的个数,就是该数逆序数的个数,这里对于一个数a[i],所有已出现的数都是1,那么getsum(n),就是求所有已经出现过的数的个数,也可以是i,getsum(a[i])就是求所有比a[i]小的元素的个数,那么逆序数的个数就是i-getsum(a[i]);
Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 15131 Accepted Submission(s): 9241
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
#include <cstdio>
#include <cstring>
int a[5010];
int c[5010];//树状数组存储比i大的元素的个数
int n;
int bit(int t){
return t&(-t);
}
void update(int pos,int num){
while(pos<=n){
c[pos]+=num;
pos+=bit(pos);
}
}
int getsum(int pos){
int ans=0;
while(pos>0){
ans+=c[pos];
pos-=bit(pos);
}
return ans;
}
int main(){
while(scanf("%d",&n)!=EOF){
memset(c,0,sizeof(c));
int minnum=0;
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
a[i]++;
minnum+=getsum(n)-getsum(a[i]);
update(a[i],1);//使用树状数组你可以看成修改原数组的值就用update,求和就用getsum函数;
}
int m=minnum;
for(int i=0;i<n;i++){
m+=n-2*a[i]+1;
if(m<minnum)minnum=m;
}
printf("%d\n",minnum);
}
return 0;
}
本文深入探讨了树状数组在计算逆序数方面的应用,详细解释了逆序数的概念,并通过一个具体实例来演示如何使用树状数组高效求解逆序数问题。
2898

被折叠的 条评论
为什么被折叠?



