Think:
1知识点:最短路_spfa()算法+前向星
2反思:判断环是否存在
以下为Accepted代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int inf = 0x3f3f3f3f;
const int N = 104;
const int M = 104;
int n, cnt, head[N], cont[N], vis[N];
double val, dis[N];
struct Edge{
int v, next;
double rate, comm, w;
}edge[M*2];
void add_edge(int u, int v, double r, double c);
bool spfa(int x);
int main(){
int m, x, i, u, v;
double r1, r2, c1, c2;
while(~scanf("%d %d %d %lf", &n, &m, &x, &val)){
cnt = 0;
memset(head, -1, sizeof(head));
for(i = 1; i <= m; i++){
scanf("%d %d %lf %lf %lf %lf", &u, &v, &r1, &c1, &r2, &c2);
add_edge(u, v, r1, c1);
add_edge(v, u, r2, c2);
}
if(spfa(x))
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
void add_edge(int u, int v, double r, double c){
edge[cnt].v = v;
edge[cnt].w = 0;
edge[cnt].rate = r;
edge[cnt].comm = c;
edge[cnt].next = head[u];
head[u] = cnt++;
}
bool spfa(int x){
queue <int> q;
memset(dis, 0, sizeof(dis));
memset(vis, 0, sizeof(vis));
dis[x] = val, vis[x] = 1;
q.push(x);
cont[x]++;
while(!q.empty()){
int u = q.front();
q.pop();
vis[u] = 0;
for(int i = head[u]; ~i; i = edge[i].next){
int v = edge[i].v;
edge[i].w = (dis[u]-edge[i].comm)*edge[i].rate - dis[u];
if(dis[v] < dis[u] + edge[i].w){
dis[v] = dis[u] + edge[i].w;
if(!vis[v]){
vis[v] = 1;
q.push(v);
cont[v]++;
}
if(cont[v] >= n)/*判断是否存在环*/
return true;
}
}
}
return false;
}

本文介绍了使用SPFA算法解决带有环的最短路径问题,并结合前向星存储结构进行高效实现。通过具体实例展示了如何判断负权环的存在,以及算法在实际问题中的应用。

被折叠的 条评论
为什么被折叠?



