今天确实有点不在状态,没咋学懂
又得拖一天
明天完整写完+++链表形式求解
今天代码不做参考
#define MAXSIZE 50
#define MgWidth 8
#define MgLength 8
#define ElemType Box
#include <stdio.h>
#include<windows.h>
//假设迷宫为7*7----设1为墙;0为通道
int mg[MgWidth + 2][MgLength + 2] = { {1,1,1,1,1,1,1,1,1,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,1,0,0,0,1,0,1},
{1,0,0,0,0,1,1,0,0,1},
{1,0,1,1,1,0,0,0,0,1},
{1,0,0,0,1,0,0,0,0,1},
{1,0,1,0,0,0,1,0,0,1},
{1,0,1,1,1,0,1,1,0,1},
{1,1,0,0,0,0,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1}
};
//方块类型
typedef struct {
int i, j;
int pre;//本路径上一个方块在队中的下标
}Box;
//顺序队列
typedef struct {
Box date[MAXSIZE];
int front, rear;
}QuType;
//顺序队-基本运算
//初始化
void InitQu(QuType*& q)
{
q = (QuType*)malloc(sizeof(QuType));
q->front = q->rear=-1;
}
//销毁
void DestroyQu(QuType*& q)
{
free(q);
}
//判空
bool QuEmpty(QuType* q)
{
return (q->rear==NULL);
}
//进队
bool enQu(QuType* q,ElemType e)
{
if (q->rear=MAXSIZE-1)
{
return false;
}
//QuType* r;
//r = (QuType*)malloc(sizeof(QuType));
q->rear++;
q->date[q->rear] = e;
return true;
}
//出队
bool DeQu(QuType*& q, ElemType& e)
{
if (q->rear == q->front)
{
return false;
}
q->front++;
e=q->date[q->front];
return true;
}
//判空
bool QueueEmpty(QuType* q)
{
return(q->rear == q->front);
}
//队长
bool QuLen(QuType* q)
{
int i = 0;
while (q->front != q->rear) {
i++;
q->front++;
}
return true;
}
//----------------------------------------------------------------
//输出路径坐标 参数:队列q ,front
void print(QuType* q, int front)
{
int k = front, j, ns = 0;
printf("\n");
do
{
j = k;
k = q->date[k].pre;
q->date[j].pre = -1;
} while (k != 0);
printf("一条迷宫路径如下:\n");
k = 0;
while (k < MAXSIZE)
{
if (q->date[k].pre == -1)
{
ns++;
printf("\t(%d,%d)", q->date[k].i, q->date[k].j);
if (ns % 5 == 0)
{
printf("\n");
}
k++;
}
printf("\n");
}
}
//参数:起点坐标、终点坐标
bool mgpath(int xi, int yi, int xe, int ye)
{
Box e;
QuType* q;
int i, j, k,di;
int i1,j1;
InitQu(q);
bool find;
e.i = xi; //起点进队
e.j = yi;
e.pre = -1;
enQu(q, e);
mg[xi][yi] = -1; //将起点位置重新赋值,避免重复判断
while (q->rear != NULL)
{
DeQu(q, e);
i = e.i; j = e.j; di = e.pre;
if (i == xe && j == ye) //找到一条路径
{
printf("找到路径\n");
print(q, q->front);
DestroyQu(q);
return true;
}
//find = false;
for (di = 0; di < 4; di++) //寻找方块e下一个可以走的所有邻块
{
switch (di)
{
case 0:
{
i1 = i-1; j1 = j ; break;
}
case 1:
{
i1 = i; j1 = j + 1; break;
}
case 2:
{
i1 = i + 1; j1 = j; break;
}
case 3:
{
i1 = i; j1 = j - 1; break;
}
}
if (mg[i1][j1] == 0)
{
e.i = i1; e.j = j1;
e.pre = q->front;
enQu(q, e);
mg[i1][j1] = -1;
}
}
}
DestroyQu(q);
return false;
}
int main()
{
if (!mgpath(1,1,8,8))
{
printf("无解");
return 1;
}
}