论文列表——stance detection

这学期做了一些和stance detection相关的工作,stance detection,可理解为“立场检测”,stance即为人对个体、事物、事件所表现出的看法或者态度,如“支持、反对”。stance detection虽然也属于文本分类,但和基于主题的文本分类、情感分类有些差异,stance的表达是更隐晦的,因此分类难度更大。在此列出自己阅读论文的列表,部分论文直接列出一些简单的笔记,这些论文可读性不强(方法过于简单,或者论文本身的贡献不在方法上,没有太多记录成笔记的价值…),部分论文会逐步完善,给出简单的阅读笔记。阅读价值评分纯粹是基于自己对于文章的理解,标准包括:动机、方法、数据集质量、实验安排、相关工作等,满分为5(相对评分,即分值高低仅反映论文在以下列表中的可读价值,并不一定说明这篇文章有多好)。列表如下:

名称 所属会议(来源) 类型 时间 阅读价值 笔记
Modeling Stance in Student Essays ACL long paper 2016 1 自己构建的student essay数据集,包含800多篇,6分类;构建了很多特征,其中path-based features可以看看。实验效果比前人的基于feature set的模型要好一点。
Hawkes Processes for Continuous Time Sequence Classification: an Application to Rumour Stance Classification in Twitter ACL short paper 2016 1 较早的一篇文章,稍微看看就好。里面将Twitter转化为时序,进而用统计学模型进行求解的转化思路值得借鉴。
A Multidimensional Lexicon for Interpersonal Stancetaking Umashanthi ACL long paper 2017 1
Cross-Target Stance Classification with Self-Attention Networks ACL short paper 2018 3.5 在具有相似预测目标的不同态度分类数据集上进行迁移学习。将模型从数据集A中学习到的关于target的知识运用到数据集B的目标预测上。划重点,迁移学习。
Weakly-Guided User Stance Prediction via Joint Modeling of Content and Social Interaction CIKM long paper 2017 2.5 无监督的stance prediction。自己爬取的CNN news和4Forums;由于数据是跟debate forum相关的,因此每条post都有有十分丰富的上下文,并且上下文不同post之间会产生关系(支持、反驳等)。模型先根据一系列的上下文和不同post之间的关系,得出不同立场的词表,再得出用户在该topic下的stance极性打分。模型的具体方法没有细看,运用了一些启发式规则和限制条件下的最优化方法。本文的问题是围绕debate forum展开,数据集具有一定的特性,不同用户的相互支持、反驳使得能够无监督地聚类
### FCS Error Detection Methods and Tools Frame Check Sequence (FCS) errors occur when data transmitted over a network does not match its checksum, indicating corruption during transmission. In IT systems, several methods and tools are employed to detect these issues. #### Common Causes of FCS Errors Network devices such as switches or routers can generate FCS errors due to hardware faults, software bugs, or environmental factors like electromagnetic interference. Identifying the root cause is crucial for effective troubleshooting[^1]. #### Methodologies for Detecting FCS Errors One approach involves monitoring traffic statistics on networking equipment. Modern operating systems and management platforms provide utilities that track interface-specific counters including FCS error counts. For instance, command-line interfaces often include commands specifically designed to display this information. For Unix-like systems, `ifconfig` or `ethtool` offers insights into interface statuses: ```bash $ ethtool -S eth0 | grep fcs ``` On Windows environments, PowerShell cmdlets serve similarly by providing detailed diagnostics through scripts tailored towards examining NIC properties: ```powershell Get-NetAdapterStatistics | Select-Object Name,FcsError ``` #### Utilizing Network Monitoring Software Beyond built-in capabilities, specialized applications enhance visibility across complex networks. Solutions from vendors offer comprehensive analysis beyond simple counter checks—they correlate events, perform deep packet inspection, and visualize trends over time which aids significantly in pinpointing intermittent problems related to FCS anomalies. Tools like Wireshark facilitate capturing live packets off the wire allowing analysts to inspect individual frames directly within graphical user interfaces where potential discrepancies become apparent visually upon examination. #### Automated Alert Systems Implementing threshold-based alerts ensures timely notification whenever abnormal levels of FCS errors arise without manual intervention required constantly checking logs manually. This proactive stance helps mitigate risks associated with degraded performance before they escalate further impacting end-users negatively.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值