B站求极限例题大赏:洛指展

注意事项

  • l(⋯)指代lim⁡x→0(⋯)\lim\limits_{x→0}(⋯)x0lim(),l+(⋯)指代lim⁡x→0+(⋯)\lim\limits_{x→0^+}(⋯)x0+lim();同理,L(⋯)指代lim⁡x→∞(⋯)\lim\limits_{x→∞}(⋯)xlim(),L+(⋯)指代lim⁡x→+∞(⋯)\lim\limits_{x→+∞}(⋯)x+lim()

常用展式

函数展式(按展式各项从小到大排列)收敛半径备注
exe^xex1+x+x22!+x33!+⋯1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+⋯1+x+2!x2+3!x3+RRR
e−xe^{-x}ex1−x+x22!−x33!+⋯1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+⋯1x+2!x23!x3+RRR
sin⁡x\sin{x}sinxx−x33!+x55!−x77!+⋯x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+⋯x3!x3+5!x57!x7+RRR
cos⁡x\cos xcosx1−x22!+x44!−x66!+⋯1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+⋯12!x2+4!x46!x6+RRR
tan⁡x\tan xtanxx+x33+215x5+⋯x+\frac{x^3}3+\frac2{15}x^5+⋯x+3x3+152x5+RRR{a1=11!a3=a12!−13!a5=a32!−a14!+15!⋯\left\{\begin{matrix}a_1=\frac1{1!}\\a_3=\frac{a_1}{2!}-\frac1{3!}\\a_5=\frac{a_3}{2!}-\frac{a_1}{4!}+\frac1{5!}\\⋯\end{matrix}\right.a1=1!1a3=2!a13!1a5=2!a34!a1+5!1
cosh⁡x=ex+e−x2\cosh x=\frac{e^x+e^{-x}}2coshx=2ex+ex1+x22!+x44!+x66!+⋯1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+⋯1+2!x2+4!x4+6!x6+RRR
sinh⁡x=ex−e−x2\sinh{x}=\frac{e^x-e^{-x}}2sinhx=2exexx+x33!+x55!+x77!+⋯x+\frac{x^3}{3!}+\frac{x^5}{5!}+\frac{x^7}{7!}+⋯x+3!x3+5!x5+7!x7+RRR
arctan⁡x\arctan{x}arctanxx−x33+x55−x77+⋯x-\frac{x^3}3+\frac{x^5}5-\frac{x^7}7+⋯x3x3+5x57x7+[−1,1][-1,1][1,1]
ln⁡(1+x)\ln(1+x)ln(1+x)x−x22+x33−x44+⋯x-\frac{x^2}2+\frac{x^3}3-\frac{x^4}4+⋯x2x2+3x34x4+(−1,1](-1,1](1,1]
−ln⁡(1−x)-\ln(1-x)ln(1x)x+x22+x33+x44+⋯x+\frac{x^2}2+\frac{x^3}3+\frac{x^4}4+⋯x+2x2+3x3+4x4+[−1,1)[-1,1)[1,1)
11+x‾\begin{matrix}1\\\overline{1+x}\end{matrix}11+x1−x+x2−x3+⋯1-x+x^2-x^3+⋯1x+x2x3+(−1,1)(-1,1)(1,1)
11+x2‾\begin{matrix}1\\\overline{1+x^2}\end{matrix}11+x21−x2+x4−x6+⋯1-x^2+x^4-x^6+⋯1x2+x4x6+(−1,1)(-1,1)(1,1)
x1+x‾\begin{matrix}x\\\overline{1+x}\end{matrix}x1+xx−x2+x3−x4+⋯x-x^2+x^3-x^4+⋯xx2+x3x4+(−1,1)(-1,1)(1,1)
x1+x2‾\begin{matrix}x\\\overline{1+x^2}\end{matrix}x1+x2x−x3+x5−x7+⋯x-x^3+x^5-x^7+⋯xx3+x5x7+(−1,1)(-1,1)(1,1)
11−x‾\begin{matrix}1\\\overline{1-x}\end{matrix}11x1+x+x2+x3+⋯1+x+x^2+x^3+⋯1+x+x2+x3+(−1,1)(-1,1)(1,1)
11−x2‾\begin{matrix}1\\\overline{1-x^2}\end{matrix}11x21+x2+x4+x6+⋯1+x^2+x^4+x^6+⋯1+x2+x4+x6+(−1,1)(-1,1)(1,1)
x1−x‾\begin{matrix}x\\\overline{1-x}\end{matrix}x1xx+x2+x3+x4+⋯x+x^2+x^3+x^4+⋯x+x2+x3+x4+(−1,1)(-1,1)(1,1)
x1−x2‾\begin{matrix}x\\\overline{1-x^2}\end{matrix}x1x2x+x3+x5+x7+⋯x+x^3+x^5+x^7+⋯x+x3+x5+x7+(−1,1)(-1,1)(1,1)
∣x∣\begin{vmatrix}x\end{vmatrix}x,但使用傅里叶级数,可用于求自然数的倒数平方和π2−4π(cos⁡x12+cos⁡3x32+cos⁡5x52+⋯)\fracπ2-\frac4π(\frac{\cos x}{1^2}+\frac{\cos3x}{3^2}+\frac{\cos5x}{5^2}+⋯)2ππ4(12cosx+32cos3x+52cos5x+)[−π,π][-π,π][π,π]

趋于零

【BV14V411B7eC】
l+[1x(π4−arctan⁡1x+1)]l^+[\frac1x(\fracπ4-\arctan\frac1{x+1})]l+[x1(4πarctanx+11)]
=l[lim⁡x→0(−arctan⁡1x+1)′]=l[\lim\limits_{x→0}(-\arctan\frac1{x+1})']=l[x0lim(arctanx+11)]
=l[(x+1)2(x+1)2+1⋅1(x+1)2]=l[\frac{(x+1)^2}{(x+1)^2+1}·\frac1{(x+1)^2}]=l[(x+1)2+1(x+1)2(x+1)21]
=12=\frac12=21

【BV15L4y1u7zb】
l[(esin⁡x+sin⁡x)1sin⁡x−(etan⁡x+tan⁡x)1tan⁡xx3]l[\frac{(e^{\sin x}+\sin x)^{\frac1{\sin x}}-(e^{\tan x}+\tan x)^{\frac1{\tan x}}}{x^3}]l[x3(esinx+sinx)sinx1(etanx+tanx)tanx1]
=l[eln⁡(esin⁡x+sin⁡x)sin⁡x−eln⁡(etan⁡x+tan⁡x)tan⁡xx3]=l[\frac{e^{\frac{\ln(e^{\sin x}+\sin x)}{\sin x}}-e^{\frac{\ln(e^{\tan x}+\tan x)}{\tan x}}}{x^3}]=l[x3esinxln(esinx+sinx)etanxln(etanx+tanx)]
=l[eln⁡(1+2sin⁡x+sin⁡2x2+sin⁡3x6+sin⁡4x24)sin⁡x−eln⁡(1+2tan⁡x+tan⁡2x2+tan⁡3x6+tan⁡4x24)tan⁡xx3]=l[\frac{e^{\frac{\ln(1+2\sin x+\frac{\sin^2x}2+\frac{\sin^3x}6+\frac{\sin^4x}{24})}{\sin x}}-e^{\frac{\ln(1+2\tan x+\frac{\tan^2x}2+\frac{\tan^3x}6+\frac{\tan^4x}{24})}{\tan x}}}{x^3}]=l[x3esinxln(1+2sinx+2sin2x+6sin3x+24sin4x)etanxln(1+2tanx+2tan2x+6tan3x+24tan4x)]
=l[e2−32sin⁡x+116sin⁡2x−5724sin⁡3x−e2−32tan⁡x+116tan⁡2x−5724tan⁡3xx3]=l[\frac{e^{2-\frac32\sin x+\frac{11}6\sin^2x-\frac{57}{24}\sin^3x}-e^{2-\frac32\tan x+\frac{11}6\tan^2x-\frac{57}{24}\tan^3x}}{x^3}]=l[x3e223sinx+611sin2x2457sin3xe223tanx+611tan2x2457tan3x]
=e2l[p(sin⁡x)−p(tan⁡x)x3,p(x)=−32x+7124x2−9116x3]=e^2l[\frac{p(\sin x)-p(\tan x)}{x^3},p(x)=-\frac32x+\frac{71}{24}x^2-\frac{91}{16}x^3]=e2l[x3p(sinx)p(tanx),p(x)=23x+2471x21691x3]
=e2l[−cos⁡x⋅p′(sin⁡x)+cos⁡3x⋅p′′′(x)−[2sec⁡3x⋅p′(tan⁡x)+sec⁡6x⋅p′′′(tan⁡x)]6]=e^2l[\frac{-\cos x·p'(\sin x)+\cos^3x·p'''(x)-[2\sec^3x·p'(\tan x)+\sec^6x·p'''(\tan x)]}6]=e2l[6cosxp(sinx)+cos3xp′′′(x)[2sec3xp(tanx)+sec6xp′′′(tanx)]]
=−e2⋅p′(0)2=-e^2·\frac{p'(0)}2=e22p(0)
=34e2=\frac34e^2=43e2

【BV1jk4y127Ta】
l[(ax+bx+cx3)1x]l[(\frac{a^x+b^x+c^x}{3})^\frac1x]l[(3ax+bx+cx)x1]
=l[exp⁡(ln⁡13(ax+bx+cx)x)]=l[\exp(\frac{\ln\frac13(a^x+b^x+c^x)}x)]=l[exp(xln31(ax+bx+cx))]
=l[exp⁡(ln⁡13(1+xln⁡a+1+xln⁡b+1+xln⁡c+o(x))x)]=l[\exp(\frac{\ln\frac13(1+x\ln{a}+1+x\ln b+1+x\ln c+o(x))}x)]=l[exp(xln31(1+xlna+1+xlnb+1+xlnc+o(x)))]
=l[exp⁡(ln⁡(1+13xln⁡abc+o(x))x)]=l[\exp(\frac{\ln(1+\frac13x\ln{abc}+o(x))}x)]=l[exp(xln(1+31xlnabc+o(x)))]
=l[exp⁡(13xln⁡abc+o(x)x)]=l[\exp(\frac{\frac13x\ln{abc}+o(x)}x)]=l[exp(x31xlnabc+o(x))]
=abc3=\sqrt[3]{abc}=3abc

【BV1kA411T7KH】
lim⁡x→0(xln⁡(1+x))1x\lim\limits_{x→0}(\frac x{\ln(1+x)})^\frac1xx0lim(ln(1+x)x)x1
=lim⁡x→0eln⁡x−ln⁡ln⁡(1+x)x=\lim\limits_{x→0}e^\frac{\ln x-\ln\ln(1+x)}x=x0limexlnxlnln(1+x)
=lim⁡x→0e1x−1(1+x)ln⁡(1+x)=\lim\limits_{x→0}e^{\frac1x-\frac1{(1+x)\ln(1+x)}}=x0limex1(1+x)ln(1+x)1
=lim⁡x→0e(1+x)ln⁡(1+x)−xx(1+x)ln⁡(1+x)=\lim\limits_{x→0}e^{\frac{(1+x)\ln(1+x)-x}{x(1+x)\ln(1+x)}}=x0limex(1+x)ln(1+x)(1+x)ln(1+x)x
=lim⁡x→0e(1+x)(x−x22+o(x2))−xx2+o(x2)=\lim\limits_{x→0}e^{\frac{(1+x)(x-\frac{x^2}2+o(x^2))-x}{x^2+o(x^2)}}=x0limex2+o(x2)(1+x)(x2x2+o(x2))x
=lim⁡x→0e12x2+o(x2)x2+o(x2)=\lim\limits_{x→0}e^{\frac{\frac12x^2+o(x^2)}{x^2+o(x^2)}}=x0limex2+o(x2)21x2+o(x2)
=e12=e^\frac12=e21

【BV1rU4y147nc】
lim⁡x→0e(1+x)1x−(1+x)exx2\lim\limits_{x→0}\frac{e^{(1+x)^\frac1x}-(1+x)^\frac ex}{x^2}x0limx2e(1+x)x1(1+x)xe
=lim⁡x→0eexp⁡(ln⁡(1+x)x)−eeln⁡(1+x)xx2=\lim\limits_{x→0}\frac{e^{\exp(\frac{\ln(1+x)}x)}-e^{\frac{e\ln(1+x)}x}}{x^2}=x0limx2eexp(xln(1+x))exeln(1+x)
=lim⁡x→0eexp⁡(1−x2+x23+o(x2))−ee(1−x2+x23+o(x2))x2=\lim\limits_{x→0}\frac{e^{\exp(1-\frac{x}{2}+\frac{x^2}3+o(x^2))}-e^{e(1-\frac x2+\frac{x^2}3+o(x^2))}}{x^2}=x0limx2eexp(12x+3x2+o(x2))ee(12x+3x2+o(x2))
=lim⁡x→0ee[1+(−x2+x23)+12(−x2+x23)2+o(x2)]−ee(1−x2+x23+o(x2))x2=\lim\limits_{x→0}\frac{e^{e[1+(-\frac x2+\frac{x^2}3)+\frac12(-\frac x2+\frac{x^2}3)^2+o(x^2)]}-e^{e(1-\frac x2+\frac{x^2}3+o(x^2))}}{x^2}=x0limx2ee[1+(2x+3x2)+21(2x+3x2)2+o(x2)]ee(12x+3x2+o(x2))
=lim⁡x→0ee(1−x2+x23)⋅ex28+o(x2)−eo(x2)x2=\lim\limits_{x→0}e^{e(1-\frac x2+\frac{x^2}3)}·\frac{e^{\frac{x^2}8+o(x^2)}-e^{o(x^2)}}{x^2}=x0limee(12x+3x2)x2e8x2+o(x2)eo(x2)
=lim⁡x→0ee⋅1+ex28+o(x2)−(1+o(x2))x2=\lim\limits_{x→0}e^e·\frac{1+\frac{ex^2}8+o(x^2)-(1+o(x^2))}{x^2}=x0limeex21+8ex2+o(x2)(1+o(x2))
=18ee+1=\frac 18e^{e+1}=81ee+1

【BV1tE411j7cB】
lim⁡x→0(1+1x)x\lim\limits_{x→0}(1+\frac1x)^xx0lim(1+x1)x
=lim⁡x→0exln⁡(1+1x)=\lim\limits_{x→0}e^{x\ln(1+\frac1x)}=x0limexln(1+x1)
=lim⁡x→0eln⁡(1+1x)1x=\lim\limits_{x→0}e^{\frac{\ln(1+\frac1x)}{\frac1x}}=x0limex1ln(1+x1)
=lim⁡x→0e−1x21(1+1x)−1x2=\lim\limits_{x→0}e^{\frac{-\frac1{x^2}\frac1{(1+\frac1x)}}{-\frac1{x^2}}}=x0limex21x21(1+x1)1
=lim⁡x→0ex1+x=\lim\limits_{x→0}e^{\frac x{1+x}}=x0lime1+xx
=1=1=1

【BV1QK4y1E7】
lim⁡x→0f′(x)−f(x)−f(0)xx\lim\limits_{x→0}\frac{f'(x)-\frac{f(x)-f(0)}x}xx0limxf(x)xf(x)f(0)
=lim⁡x→01x([f′(0)+xf′′(0)+o(x)]−1x[f(0)+xf′(0)+x22f′′(0)+o(x2)−f(0)])=\lim\limits_{x→0}\frac1x([f'(0)+xf''(0)+o(x)]-\frac1x[f(0)+xf'(0)+\frac{x^2}2f''(0)+o(x^2)-f(0)])=x0limx1([f(0)+xf′′(0)+o(x)]x1[f(0)+xf(0)+2x2f′′(0)+o(x2)f(0)])
=lim⁡x→01x([f′(0)+xf′′(0)]−1x[xf′(0)+x22f′′(0)]+o(x))=\lim\limits_{x→0}\frac1x([f'(0)+xf''(0)]-\frac1x[xf'(0)+\frac{x^2}2f''(0)]+o(x))=x0limx1([f(0)+xf′′(0)]x1[xf(0)+2x2f′′(0)]+o(x))
=lim⁡x→01x(x2f′′(0)+o(x))=\lim\limits_{x→0}\frac1x(\frac x2f''(0)+o(x))=x0limx1(2xf′′(0)+o(x))
=12f′′(0)=\frac12f''(0)=21f′′(0)

【BV1Si4y1T7dK】
lim⁡x→0tan⁡(tan⁡(⋯tan⁡x))n−sin⁡(sin⁡(⋯sin⁡x))nx3\lim\limits_{x→0}\frac{\tan(\tan(⋯\tan x))_n-\sin(\sin(⋯\sin x))_n}{x^3}x0limx3tan(tan(tanx))nsin(sin(sinx))n
=lim⁡x→0tan⁡(⋯tan⁡(x+13x3+o(x3)))n−1−sin⁡(⋯sin⁡(x−16x3+o(x3)))n−1x3=\lim\limits_{x→0}\frac{\tan(⋯\tan(x+\frac13x^3+o(x^3)))_{n-1}-\sin(⋯\sin(x-\frac16x^3+o(x^3)))_{n-1}}{x^3}=x0limx3tan(tan(x+31x3+o(x3)))n1sin(sin(x61x3+o(x3)))n1
=lim⁡x→0tan⁡(⋯tan⁡(x+23x3+o(x3)))n−2−sin⁡(⋯sin⁡(x−26x3+o(x3)))n−2x3=\lim\limits_{x→0}\frac{\tan(⋯\tan(x+\frac23x^3+o(x^3)))_{n-2}-\sin(⋯\sin(x-\frac26x^3+o(x^3)))_{n-2}}{x^3}=x0limx3tan(tan(x+32x3+o(x3)))n2sin(sin(x62x3+o(x3)))n2
=⋯=⋯=
=lim⁡x→0(x+n3x3+o(x3))−(x−n6x3+o(x3))x3=\lim\limits_{x→0}\frac{(x+\frac n3x^3+o(x^3))-(x-\frac n6x^3+o(x^3))}{x^3}=x0limx3(x+3nx3+o(x3))(x6nx3+o(x3))
=n2=\frac n2=2n

【BV1T5411G7nW】
lim⁡x→01−cos⁡xcos⁡2xcos⁡3x3x2\lim\limits_{x→0}\frac{1-\cos x\sqrt{\cos{2x}}\sqrt[3]{\cos{3x}}}{x^2}x0limx21cosxcos2x3cos3x
=lim⁡x→01−[1−x22+o(x2)][1−x2+o(x2)][1−32x2+o(x2)]x2=\lim\limits_{x→0}\frac{1-[1-\frac{x^2}2+o(x^2)][1-x^2+o(x^2)][1-\frac32x^2+o(x^2)]}{x^2}=x0limx21[12x2+o(x2)][1x2+o(x2)][123x2+o(x2)]
=lim⁡x→01−(1−x22)(1−x2)(1−32x2)+o(x2)x2=\lim\limits_{x→0}\frac{1-(1-\frac{x^2}2)(1-x^2)(1-\frac32x^2)+o(x^2)}{x^2}=x0limx21(12x2)(1x2)(123x2)+o(x2)
=lim⁡x→01−(1−x22−x2−32x2)+o(x2)x2=\lim\limits_{x→0}\frac{1-(1-\frac{x^2}2-x^2-\frac32x^2)+o(x^2)}{x^2}=x0limx21(12x2x223x2)+o(x2)
=12+1+32=\frac12+1+\frac32=21+1+23
=3=3=3

【BV1Ti4y1F7aM】
lim⁡x→0x2−arctan⁡2xx4\lim\limits_{x→0}\frac{x^2-\arctan^2x}{x^4}x0limx4x2arctan2x
=lim⁡x→0x2−(x−x33+o(x3))2x4=\lim\limits_{x→0}\frac{x^2-(x-\frac{x^3}3+o(x^3))^2}{x^4}=x0limx4x2(x3x3+o(x3))2
=lim⁡x→0x2−(x2−23x4+o(x4))x4=\lim\limits_{x→0}\frac{x^2-(x^2-\frac23x^4+o(x^4))}{x^4}=x0limx4x2(x232x4+o(x4))
=23=\frac23=32

【BV1Xr4y1A7Ba】
lim⁡x→0(sin⁡2x+cos⁡x)1x\lim\limits_{x→0}(\sin{2x}+\cos x)^\frac1xx0lim(sin2x+cosx)x1
=lim⁡x→0(2x+(2x)33!+o(x3)+1−x22!+o(x2))1x=\lim\limits_{x→0}(2x+\frac{(2x)^3}{3!}+o(x^3)+1-\frac{x^2}{2!}+o(x^2))^\frac1x=x0lim(2x+3!(2x)3+o(x3)+12!x2+o(x2))x1
=lim⁡x→0(1+2x+o(x))1x=\lim\limits_{x→0}(1+2x+o(x))^{\frac1x}=x0lim(1+2x+o(x))x1
=lim⁡x→0e1xln⁡(1+2x+o(x))=\lim\limits_{x→0}e^{\frac1x\ln(1+2x+o(x))}=x0limex1ln(1+2x+o(x))
=lim⁡x→0e2+o(1)=\lim\limits_{x→0}e^{2+o(1)}=x0lime2+o(1)
=e2=e^2=e2

趋于无穷

【BV1jk4y127Ta】
L+[(ax+bx+cx‾3)1x]L^+[(\begin{matrix}\underline{a^x+b^x+c^x}\\3\end{matrix})^\frac1x]L+[(ax+bx+cx3)x1]
=L+[max⁡(a,b,c)((amax⁡(a,b,c))x+(bmax⁡(a,b,c))x+(cmax⁡(a,b,c))x‾3)1x]=L^+[\max(a,b,c)(\begin{matrix}\underline{(\frac a{\max(a,b,c)})^x+(\frac b{\max(a,b,c)})^x+(\frac c{\max(a,b,c)})^x}\\3\end{matrix})^\frac1x]=L+[max(a,b,c)((max(a,b,c)a)x+(max(a,b,c)b)x+(max(a,b,c)c)x3)x1]
=L+[max⁡(a,b,c)(1+0+03)1x]=L^+[\max(a,b,c)(\frac{1+0+0}3)^\frac1x]=L+[max(a,b,c)(31+0+0)x1]
=max⁡(a,b,c)=\max(a,b,c)=max(a,b,c)

【BV1kG4y1C75e】
L+[n(e−(1+1n)n)]L^+[n(e-(1+\frac1n)^n)]L+[n(e(1+n1)n)]
=l+[1n(e−(1+n)1n)]=l^+[\frac1n(e-(1+n)^\frac1n)]=l+[n1(e(1+n)n1)]
=−l+[((1+n)1n)′]=-l^+[((1+n)^\frac1n)']=l+[((1+n)n1)]
=−l+[(e1nln⁡(1+n))′]=-l^+[(e^{\frac1n\ln(1+n)})']=l+[(en1ln(1+n))]
=−l+[(e1−n2+o(n))′]=-l^+[(e^{1-\frac n2+o(n)})']=l+[(e12n+o(n))]
=−l+[(−12+o(1))(e1−n2+o(n))]=-l^+[(-\frac12+o(1))(e^{1-\frac n2+o(n)})]=l+[(21+o(1))(e12n+o(n))]
=e2=\frac e2=2e

【BV1mu411D7ZD】
L+[(1+1x)x2ex]L^+[\frac{(1+\frac1x)^{x^2}}{e^x}]L+[ex(1+x1)x2]
=L+[ex2ln⁡(1+1x)−x]=L^+[e^{x^2\ln(1+\frac1x)-x}]=L+[ex2ln(1+x1)x]
=l+[e1x2ln⁡(1+x)−1x]=l^+[e^{\frac1{x^2}\ln(1+x)-\frac1x}]=l+[ex21ln(1+x)x1]
=l+[e1x2(x−x22+x33+o(x))−1x]=l^+[e^{\frac1{x^2}(x-\frac{x^2}2+\frac{x^3}3+o(x))-\frac1x}]=l+[ex21(x2x2+3x3+o(x))x1]
=l+(e1x−12+x3+o(x)−1x)=l^+(e^{\frac1x-\frac12+\frac x3+o(x)-\frac1x})=l+(ex121+3x+o(x)x1)
=e−12=e^{-\frac12}=e21

【BV1KA411N7cb】
L+(sin⁡x2+1−sin⁡x2−1)L^+(\sin\sqrt{x^2+1}-\sin\sqrt{x^2-1})L+(sinx2+1sinx21)
=L+(cos⁡x2+1+x2−12sin⁡x2+1−x2−12)=L^+(\cos\frac{\sqrt{x^2+1}+\sqrt{x^2-1}}2\sin\frac{\sqrt{x^2+1}-\sqrt{x^2-1}}2)=L+(cos2x2+1+x21sin2x2+1x21)
=L+(cos⁡2x2sin⁡1x2+1+x2−1)=L^+(\cos\frac{2x}2\sin\frac1{\sqrt{x^2+1}+\sqrt{x^2-1}})=L+(cos22xsinx2+1+x211)
=L+(cos⁡x⋅2sin⁡12x)=L^+(\cos x·2\sin\frac1{2x})=L+(cosx2sin2x1)
=L+(22xcos⁡x)=L^+(\frac2{2x}\cos x)=L+(2x2cosx)
=0=0=0

【BV1PT41127FX】
L+[(x1x−1)1ln⁡x]L^+[(x^\frac1x-1)^\frac1{\ln x}]L+[(xx11)lnx1]
=l+[(x−x−1)1−ln⁡x]=l^+[(x^{-x}-1)^\frac1{-\ln x}]=l+[(xx1)lnx1]
=exp⁡(−l+[ln⁡(x−x−1)ln⁡x])=\exp(-l^+[\frac{\ln(x^{-x}-1)}{\ln x}])=exp(l+[lnxln(xx1)])
=exp⁡(l+[x(1+ln⁡x)⋅x−xx−x−1])=\exp(l^+[\frac{x(1+\ln x)·x^{-x}}{x^{-x}-1}])=exp(l+[xx1x(1+lnx)xx])
=exp⁡(l+[x(1+ln⁡x)1−xx])=\exp(l^+[\frac{x(1+\ln x)}{1-x^x}])=exp(l+[1xxx(1+lnx)])
=exp⁡(l+[xln⁡x1−exln⁡x])=\exp(l^+[\frac{x\ln x}{1-e^{x\ln x}}])=exp(l+[1exlnxxlnx])
因为l+(xln⁡x)=l+(ln⁡x1x)=l+(1x−1x2)=0−l^+(x\ln x)=l^+(\frac{\ln x}{\frac1x})=l^+(\frac{\frac1x}{-\frac1{x^2}})=0^-l+(xlnx)=l+(x1lnx)=l+(x21x1)=0
所以原式====t=xln⁡xexp⁡(lim⁡t→0−t1−et)=exp⁡(−lim⁡t→0−1et)=e−1\overset{t=x\ln x}{====}\exp(\lim\limits_{t→0^-}\frac t{1-e^t})=\exp(-\lim\limits_{t→0^-}\frac1{e^t})=e^{-1}====t=xlnxexp(t0lim1ett)=exp(t0limet1)=e1

【BV1Qf4y14797】
l(∫02x∣1−tx∣sin⁡tdt1−cos⁡x)l(\frac{∫_0^{2x}|1-\frac tx|\sin t\mathrm dt}{1-\cos x})l(1cosx02x∣1xtsintdt)
=l(∫0x(1−tx)tdt+∫x2x(tx−1)tdt12x2+o(x2))=l(\frac{∫_0^x(1-\frac tx)t\mathrm dt+∫_x^{2x}(\frac tx-1)t\mathrm dt}{\frac12x^2+o(x^2)})=l(21x2+o(x2)0x(1xt)tdt+x2x(xt1)tdt)
=l([t22−t33x]0x+[t33x−t22]x2x12x2+o(x2))=l(\frac{[\frac{t^2}2-\frac{t^3}{3x}]_0^x+[\frac{t^3}{3x}-\frac{t^2}2]_x^{2x}}{\frac12x^2+o(x^2)})=l(21x2+o(x2)[2t23xt3]0x+[3xt32t2]x2x)
=l(x22−x23+83x2−2x2−x23+x2212x2+o(x2))=l(\frac{\frac{x^2}2-\frac{x^2}3+\frac83x^2-2x^2-\frac{x^2}3+\frac{x^2}2}{\frac12x^2+o(x^2)})=l(21x2+o(x2)2x23x2+38x22x23x2+2x2)
=l(x212x2+o(x2))=l(\frac{x^2}{\frac12x^2+o(x^2)})=l(21x2+o(x2)x2)
=2=2=2

【BV1Xr4y1A7Ba】
L[(sin⁡2x+cos⁡1x)x]L[(\sin\frac2x+\cos\frac1x)^x]L[(sinx2+cosx1)x]
=l[(sin⁡2x+cos⁡x)1x]=l[(\sin2x+\cos x)^{\frac1x}]=l[(sin2x+cosx)x1]
=l[(1+2x+o(x))12x+o(x)2x+o(x)x]=l[(1+2x+o(x))^{\frac1{2x+o(x)}\frac{2x+o(x)}x}]=l[(1+2x+o(x))2x+o(x)1x2x+o(x)]
=l(e2x+o(x)x)=l(e^\frac{2x+o(x)}x)=l(ex2x+o(x))
=e2=e^2=e2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值